高级检索

Micro-LED蓝宝石衬底AlN上GaN激光剥离研究

张俊, 张为国

张俊, 张为国. Micro-LED蓝宝石衬底AlN上GaN激光剥离研究[J]. 激光技术, 2023, 47(1): 25-31. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.004
引用本文: 张俊, 张为国. Micro-LED蓝宝石衬底AlN上GaN激光剥离研究[J]. 激光技术, 2023, 47(1): 25-31. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.004
ZHANG Jun, ZHANG Weiguo. Micro-LED laser lift-off research of GaN on AlN of sapphire substrate[J]. LASER TECHNOLOGY, 2023, 47(1): 25-31. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.004
Citation: ZHANG Jun, ZHANG Weiguo. Micro-LED laser lift-off research of GaN on AlN of sapphire substrate[J]. LASER TECHNOLOGY, 2023, 47(1): 25-31. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.004

Micro-LED蓝宝石衬底AlN上GaN激光剥离研究

详细信息
    作者简介:

    张俊(1979-), 男, 博士, 高级工程师, 主要从事泛半导体装备研究, 包括集成电路装备、平板显示装备、LED制造装备等。E-mail: zhangj@smee.com.cn

  • 中图分类号: TN249;V261.8

Micro-LED laser lift-off research of GaN on AlN of sapphire substrate

  • 摘要: 为了比较分析纳秒激光和皮秒激光剥离微型发光二极管(micro-LED)时AlN上GaN的热传导效果, 采用了改进的实时紫外光吸收和热传导的激光剥离理论模型进行计算分析的方法, 取得了在不同的激光波长、激光脉冲宽度、激光能量密度下的紫外波段光辐照时和停止辐照后GaN材料热场分布等数据, 并获得了适合micro-LED器件剥离的所用纳秒激光和皮秒激光的阈值条件。结果表明, 激光脉宽、激光波长、激光能量密度是实现激光剥离工艺的关键因素; 较适合的激光波长为209 nm~365 nm的紫外波段; 皮秒激光的剥离效果优于纳米激光, 且激光的脉冲宽度越短, 激光的波长越短, 剥离所需激光脉冲阈值能量也越低, 则对LED芯片区域的热影响也越小。该研究可为开发新型激光剥离设备和相关工艺应用提供重要参考。
    Abstract: In order to compare laser lift-off thermal conductive effects by nanosecond laser and picosecond laser in GaN on AlN of micro light-emitting diode(micro-LED), an improved theoretical model of laser lift-off process for real-time ultraviolet light absorption and heat conduction was established. This model was used to calculate and analysis the thermal field distribution of GaN materials irradiated by various ultraviolet, laser pulses with different laser wavelength, laser pulse width, laser energy density. And the threshold conditions suitable for micro-LED devices of laser lift-off process by nanosecond laser and picosecond laser were obtained. The results show that laser pulse width, laser wavelength, and laser energy density are the key factors of laser lift-off process. The suitable laser wavelength includes 209 nm~365 nm ultraviolet band, and the laser lift-off effect of picosecond laser is better than that of nanosecond laser. Moreover, the shorter the pulse width and the shorter the wavelength of laser, the lower the threshold energy of laser pulse is needed for lift-off, and the smaller the thermal impact on the LED chip area. This research provides an important reference for the development of new laser lift-off equipment and related process applications.
  • 图  1   激光剥离前发光二极管结构

    Figure  1.   LED structure before laser lift-off

    图  2   GaN材料的激光吸收系数

    Figure  2.   Absorption coefficient of laser in GaN

    图  3   材料中激光传播示意图

    Figure  3.   Laser transmission in materials

    图  4   热传导模型示意图

    Figure  4.   Heat transmission in materials

    图  5   光辐照示意图

    Figure  5.   Light irradiation sketch

    图  6   248 nm波长、30 ns脉宽的纳秒激光器辐照时GaN不同深度温度变化

    Figure  6.   Temperature variation in GaN during irradiation by nanosecond pulsed laser of 248 nm wavelength and 30 ns pulse width

    图  7   248 nm波长、30 ns脉宽的纳秒激光器辐后GaN不同深度温度变化

    Figure  7.   Temperature variation in GaN after irradiation by nanosecond pulsed laser of 248 nm wavelength and 30 ns pulse width

    图  8   GaN表面温度达1050 ℃时,各波长纳秒激光器所需的单脉冲能量阈值

    Figure  8.   Pulse energy threshold required for GaN surface temperature reaching 1050℃ at various wavelengths of nanosecond laser

    图  9   266 nm波长、30 ps脉宽的皮秒激光器辐照时GaN不同深度温度变化

    Figure  9.   Temperature variation in GaN during irradiation by picosecond pulsed laser of 266 nm wavelength and 30 ps pulse width

    图  10   266 nm波长、30 ps脉宽的纳秒激光器辐照后GaN表面温度变化

    Figure  10.   Temperature variation in GaN after irradiation by picosecond pulsed laser of 266 nm wavelength and 30 ps pulse width

    图  11   GaN表面温度达1050 ℃时,各波长皮秒激光器所需的单脉冲能量阈值

    Figure  11.   Pulse energy threshold required for GaN surface temperature reaching 1050 ℃ at various wavelengths of picosecond laser

    图  12   纳秒激光与皮秒激光作用后(降温)不同深度热影响

    Figure  12.   Thermal effects of nanosecond laser and picosecond laser at different depths

  • [1]

    HWANG D, MUGHAL A, PYNN C, et al. Sustainedhigh external quantum efficiency in ultrasmall blue Ⅲ-nitride micro-LEDs[J]. Applied Physics Express, 2017, 10(3): 1-5.

    [2] 杨富理, 袁根福, 李浩. 异种金属氧化物辅助激光刻蚀蓝宝石的研究[J]. 激光技术, 2021, 45(6): 756-761. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.014

    YANG F L, YUAN G F, LI H. Study on laser etching of sapphire assisted by dissimilar metal oxides[J]. Laser Technology, 2021, 45(6): 756-761(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.06.014

    [3] 边晓微, 陈檬. 李港. 355 nm纳秒和1064 nm皮秒激光加工蓝宝石研究[J]. 激光与光电子学进展, 2016, 53(5): 051404. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201605028.htm

    BIAN X W, CHEN M, LI G. Study on machining of sapphire by 355 nm nanosecond and 1064 nm picosecond laser[J]. Laser & Optoelectronics Progress, 2016, 53(5): 051404(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201605028.htm

    [4]

    ISABEL A P S, MATHIVATHANI S. Fabrication of GaN LED's by wafer bonding and lift-off techniques[J]. International Journal of Latest Trends in Engineering and Technology, 2015, 5(3): 232-247.

    [5] 曹文贤. Micro LED巨量转移技术的研究进展[J]. 电视技术, 2021, 45(9): 107-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DSSS202109031.htm

    CHAO W X. Recent progress of micro LED mass transfer method[J]. Video Engineering, 2021, 45(9): 107-114(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DSSS202109031.htm

    [6]

    MARINOV V R. Laser-enabled extremely-high rate technology for μLED assembly[J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 692-695. DOI: 10.1002/sdtp.12352

    [7] 季洪雷, 张萍萍, 陈乃军, 等. Micro-LED显示的发展现状与技术挑战[J]. 液晶与显示, 2021, 36(8): 1102-1110. https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS202108006.htm

    JI H L, ZHANG P P, CHEN N J, et al. Micro LED display: Recent progress and future challenge[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(8): 1102-1110(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS202108006.htm

    [8] 许小红, 武海顺, 张富强, 等. 氮化铝薄膜结构和表面粗糙度的研究[J]. 稀有金属材料与工程, 2000, 29(6): 394-397. DOI: 10.3321/j.issn:1002-185X.2000.06.009

    XU X H, WU H Sh, ZHANG F Q, et al. Studies of structure and surface roughness of AlN thin films[J]. Rare Metal Materials and Engineering, 2000, 29(6): 394-397(in Chinese). DOI: 10.3321/j.issn:1002-185X.2000.06.009

    [9]

    BAI J, WANG T, PARBROOK K B, et al. A study of dislocations in AlN and GaN films grown on sapphire substrates[J]. Journal of Crystal Growth, 2005, 282(3/4): 290-296.

    [10]

    GOBLER C, BIERBRAUER C, MOSER R, et al. GaN-based micro-LED arrays on flexible substrates for optical cochlear implants[J]. Journal of Physics, 2014, D47(20): 1-6.

    [11]

    DELMDAHL R, PAETZEL R, BRUNE J. Large-area laser-lift-off processing in microelectronics[J]. Physics Procedia, 2013, 41(30): 241-248.

    [12] 郝春蕾. 氮化铝薄膜的制备与性能研究[M]. 哈尔滨: 哈尔滨工业大学, 2015: 6-7.

    HAO Ch L. Manufacturing and specification research of AlN thin films[M]. Harbin: Harbin Institute of Technology, 2015: 6-7(in Chinese).

    [13] 王婷, 郭霞, 刘斌, 等. 基于有限元分析法的激光剥离技术中GaN材料瞬态温度场研究[J]. 中国激光, 2005, 32(9): 1295-1299. DOI: 10.3321/j.issn:0258-7025.2005.09.030

    WANG T, GUO X, LIU B, et al. Transient temperature field study of GaN material in laser lift-off technique based on finite element method[J]. Chinese Journal of Lasers, 2005, 32(9): 1295-1299(in Chinese). DOI: 10.3321/j.issn:0258-7025.2005.09.030

    [14] 李椿, 钱尚武, 章立源. 热学[M]. 北京: 高等教育出版社, 2008: 36-37.

    LI Ch, QIAN Sh W, ZHANG L Y. Thermodynamics[M]. Beijing: Higher Education Press, 2008: 36-37(in Chinese).

    [15] 王婷, 郭霞, 刘斌, 等. 激光剥离Al2O3中GaN中GaN材料温度场的模拟[J]. 光电工程, 2006, 33(3): 102-103. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC200603023.htm

    WANG T, GUO X, LIU B, et al. Temperature field simulation of GaN material during Al2O3/GaN laser lift-off[J]. Opto-Electronic Engineering, 2006, 33(3): 102-103(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC200603023.htm

    [16] 冯立伟. 热传导方程几种差分格式的MATLAB数值解法比较[J]. 沈阳化工大学学报, 2011, 25(2): 179-182. DOI: 10.3969/j.issn.2095-2198.2011.02.017

    FENG L W. A comparison of numerical solutions of several diffe-rence schemes for heat conduction equation by MATLAB[J]. Journal of Shenyang University of Chemical Technology, 2011, 25(2): 179-182(in Chinese). DOI: 10.3969/j.issn.2095-2198.2011.02.017

    [17] 陶燕燕. 求解热传导方程的Crank-Nicolson方法[J]. 枣庄学院学报, 2012, 29(5): 4-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZSZ201205001.htm

    TAO Y Y. Crank-Nicolson method for solving heat conduction equation[J]. Journal of Zaozhuang University, 2012, 29(5): 4-8(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZZSZ201205001.htm

    [18] 黄生荣, 刘宝林. 激光剥离GaN/Al2O3材料温度分布的解析分析[J]. 光电子激光, 2004, 15(7): 831-834. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ200407019.htm

    HUANG Sh R, LIU B L. Temperature distribution analytical calculation for the laser lift-off of GaN/Al2O3 Material[J]. Journal of Optoelectronics·Laser, 2004, 15(7): 831-834(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ200407019.htm

    [19] 方圆, 郭霞, 王婷, 等. 激光剥离技术实现GaN薄膜从蓝宝石衬底移至Cu衬底[J]. 激光与红外, 2007, 37(1): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW200701019.htm

    FANG Y, GUO X, WANG T, et al. Transferring GaN film from sapphire to cu substrate by laser lift-off[J]. Laser & Infrared, 2007, 37(1): 62-65 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW200701019.htm

    [20] 林飞, 陈志远, 刘宝林, 等. 低压下激光剥离的研究[J]. 现代电子技术, 2014, 37(12): 156-159. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ201412048.htm

    LIN F, CHEN Zh Y, LIU B L, et al. Study on laser lift off of GaN material in low pressure[J]. Modern Electronics Technique, 2014, 37(12): 156-159 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ201412048.htm

  • 期刊类型引用(2)

    1. 李静,王雅清,陆亚婷,周杰,倪晓昌. 皮秒激光在微结构制备中的应用. 轻工科技. 2024(02): 91-93 . 百度学术
    2. 乔健,吴振铎,彭信翰,冉雨宣,杨景卫. Micro-LED芯片激光去除机理及工艺参数优化. 光学精密工程. 2024(09): 1360-1370 . 百度学术

    其他类型引用(1)

图(12)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  3
  • PDF下载量:  10
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-02-15
  • 修回日期:  2022-05-22
  • 发布日期:  2023-01-24

目录

    /

    返回文章
    返回