高级检索

石墨烯纳米片阵列的表面等离激元法诺共振

胡莉, 席锋

胡莉, 席锋. 石墨烯纳米片阵列的表面等离激元法诺共振[J]. 激光技术, 2023, 47(1): 19-24. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.003
引用本文: 胡莉, 席锋. 石墨烯纳米片阵列的表面等离激元法诺共振[J]. 激光技术, 2023, 47(1): 19-24. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.003
HU Li, XI Feng. Plasmonic Fano resonance based on the graphene nanosheet array[J]. LASER TECHNOLOGY, 2023, 47(1): 19-24. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.003
Citation: HU Li, XI Feng. Plasmonic Fano resonance based on the graphene nanosheet array[J]. LASER TECHNOLOGY, 2023, 47(1): 19-24. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.003

石墨烯纳米片阵列的表面等离激元法诺共振

基金项目: 

国家自然科学基金资助项目 11804035

详细信息
    作者简介:

    胡莉(1978-), 女, 副教授, 现主要从事光电功能材料的研究。E-mail: huli@ctbu.edu.cn

  • 中图分类号: O469

Plasmonic Fano resonance based on the graphene nanosheet array

  • 摘要: 为了在中红外波段获得多阶表面等离激元法诺共振, 设计了结构简单、制备方便的非对称石墨烯纳米片二聚体阵列超表面。采用有限元分析方法, 对各阶法诺共振峰产生的物理机制, 费米能级、纳米片结构及相对位置等因素对法诺共振的影响进行了理论分析。结果表明, 随着费米能级的增加, 法诺共振发生蓝移; 表面等离激元共振效应增强, 同时增强了近场的局域效应; 随着纳米片二聚体的大小和位置的不对称性增加, 法诺线型的非对称性也随之增加; 这种结构简单的多阶表面等离激元法诺共振有望在生物传感及相关领域得到广泛应用。该研究为进一步的实验研究提供了理论参考。
    Abstract: In order to obtain strong multiple Fano resonances, a metasurface composed of asymmetric nanosheet heterodimer was designed in the paper. Based on the finite element analysis method, the physical mechanism of Fano resonances was analyzed by the hybridization theory, and the different Fano responses resulted from different Fermi levels, structures parameters were analyzed. Results show that when the Fermi level of the graphene nanosheet increases, the Fano resonance peaks blue shift, and the intensity of graphene responses is enhanced, which causes that the local effect and absorption are enhanced accordingly. At the same time, with the increase of the asymmetry of the size and position of the nanosheet heterodimer, the asymmetry of Fano resonances also increases. The Fano resonances based on the simply graphene nanosheet heterodimer array are expected to be widely used in biosensor and related fields. The study provides theoretical reference for further experimental research.
  • 图  1   a—石墨烯纳米片二聚体的结构及参数  b—模型单元结构图  c~e—石墨烯纳米片二聚体阵列在偏振方向为x的线偏光激发下的法诺共振谱(L1=70 nm, L2=40 nm, a=0 nm, EF=0.5 eV)

    Figure  1.   a—structure and parameters of graphene nanosheet heterodimer  b—schematic of each cell unite  c~e—the resonance spectra of the graphene nanosheet heterodimer array excited with x-polarized incident light (L1=70 nm, L2=40 nm, a=0 nm, EF=0.5 eV)

    图  2   L1=70 nm, L2=40 nm, a=0 nm, EF=0.5 eV时,单纳米片和纳米片二聚体在偏振方向为x的线偏光激发下的反射谱

    Figure  2.   Reflection spectra of nanosheet and nanosheet heterodimer (L1=70 nm, L2=40 nm, a=0 nm, EF=0.5 eV) excited with x-polarized incident light

    图  3   图 2c中4个共振峰对应的表面电荷分布图

    a—共振峰1   b—共振峰2   c—共振峰3   d—共振峰4

    Figure  3.   Surface charge density distributions of the four hybridized plasmonic modes in Fig. 2c

    a—peak 1   b—peak 2   c—peak 3   d—peak 4

    图  4   图 2c中4个共振峰对应的电场分布图

    a—共振峰1   b—共振峰2   c—共振峰3   d—共振峰4

    Figure  4.   Electric field distributions of the four hybridized plamonic modes in Fig. 2c

    a—peak 1   b—peak 2   c—peak 3   d—peak 4

    图  5   L1=70 nm, L2=40 nm, a=0 nm时,不同费米能级所对应的反射谱和吸收谱

    Figure  5.   Reflection spectra and absorption spectra with different Fermi levels EF (L1=70 nm, L2=40 nm, a=0 nm)

    图  6   L1=70 nm, a=0 nm, EF=0.5 eV时,纳米片Ⅱ不同长度时所对应的反射谱

    Figure  6.   Reflection spectra with different length of nanosheet Ⅱ (L1=70 nm, a=0 nm, EF=0.5 eV)

    图  7   L1=70 nm, L2=40 nm, EF=0.5 eV时,错位参量a不同时对应的反射谱

    Figure  7.   Reflection spectra with different location parameters a of the nanosheet heterodimer (L1=70 nm, L2=40 nm, EF=0.5 eV)

  • [1]

    MAIER S A, ATWATER H A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures[J]. Journal of Applied Physics, 2005, 98(1): 011101. DOI: 10.1063/1.1951057

    [2]

    LEE H, LEE J H, JIN S M, et al. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering[J]. Nano Letters, 2013, 13(12): 6113-6121. DOI: 10.1021/nl4034297

    [3]

    TSAI W Y, HUANG J S, HUANG C B. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmo-nic archimedes spiral[J]. Nano Letters, 2014, 14(2): 547-552. DOI: 10.1021/nl403608a

    [4]

    PILO-PAIS M, WATSON A, DEMERS S, et al. Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures[J]. Nano Letters, 2014, 14(4): 2099-2104. DOI: 10.1021/nl5003069

    [5]

    HWANG Y, HOPKINS B, WANG D, et al. Optical chirality from dark-field illumination of planar plasmonic nanostructures[J]. Laser & Photonics Reviews, 2017, 11(6): 1700216.

    [6]

    PANARO S, NAZIR A, LIBERALE C, et al. Dark to bright mode conversion on dipolar nanoantennas: A symmetry-breaking approach[J]. ACS Photonics, 2014, 1(4): 310-314. DOI: 10.1021/ph500044w

    [7]

    FAN J A, BAO K, WU C, et al. Fano-like interference in self-assembled plasmonic quadrumer clusters[J]. Nano Letters, 2010, 10(11): 4680-4685. DOI: 10.1021/nl1029732

    [8]

    LIU Sh D, YANG Y B, CHEN Zh H, et al. Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry[J]. The Journal of Physical Chemistry C, 2013, 117(27): 14218-14228. DOI: 10.1021/jp404575v

    [9]

    CHENG F, LIU H F, LI B H, et al. Tuning asymmetry parameter of Fano resonance of spoof surface plasmons by modes coupling[J]. A-pplied Physics Letters, 2012, 100(13): 131110. DOI: 10.1063/1.3698117

    [10]

    NGUYEN T K, LE T D, DANG P T, et al. Asymmetrically engineered metallic nanodisk clusters for plasmonic Fano resonance generation[J]. Journal of the Optical Society of America B, 2017, 34(3): 668-672. DOI: 10.1364/JOSAB.34.000668

    [11]

    ZHANG S, BAO K, HALAS N J, et al. Substrate-induced Fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed[J]. Nano Letters, 2011, 11(4): 1657-1663. DOI: 10.1021/nl200135r

    [12]

    HU L, HUANG Y, FANG L, et al. Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality[J]. Scientific Reports, 2015, 5(10): 16069.

    [13]

    KOPPENS F H L, CHANG D E, de ABAJO F J G. Graphene plasmonics: A platform for strong light-matter interactions[J]. Nano Letters, 2011, 11(8): 3370-3377. DOI: 10.1021/nl201771h

    [14]

    GRIGORENKO A N, POLINI M, NOVOSELOV K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11): 749-758. DOI: 10.1038/nphoton.2012.262

    [15]

    JABLAN M, BULJAN H, SOLJAČIC' M. Plasmonics in graphene at infrared frequencies[J]. Physical Review, 2009, B80(24): 245435.

    [16]

    SHI C, HE X, PENG J, et al. Tunable terahertz hybrid graphene-metal patterns metamaterials[J]. Optics & Laser Technology, 2019, 114: 28-34.

    [17]

    ZHAO B, ZHANG Z M. Strong plasmonic coupling between graphene ribbon array and metal gratings[J]. ACS Photonics, 2015, 2(11): 1611-1618. DOI: 10.1021/acsphotonics.5b00410

    [18]

    EMANI N K, CHUNG T F, NI X, et al. Electrically tunable damping of plasmonic resonances with graphene[J]. Nano Letters, 2012, 12(10): 5202-5206. DOI: 10.1021/nl302322t

    [19]

    WANG X, MENG H, DENG S, et al. Hybrid metal graphene-based tunable plasmon-induced transparency in terahertz metasurface[J]. Nanomaterials, 2019, 9(3): 385. DOI: 10.3390/nano9030385

    [20] 武继江, 高金霞. 金属-石墨烯光子晶体-金属结构的吸收特性[J]. 激光技术, 2019, 43(5): 614-618. DOI: 10.7510/jgjs.issn.1001-3806.2019.05.005

    WU J J, GAO J X. Absorption characteristics of metal-graphene photonic crystal-metal structures[J]. Laser Technology, 2019, 43(5): 614-618 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2019.05.005

    [21]

    RODRIGO D, TITTL A, LIMAJ O, et al. Double-layer graphene for enhanced tunable infrared plasmonics[J]. Light: Science & Applications, 2017, 6(6): e16277.

    [22]

    BRAR V W, JANG M S, SHERROTT M, et al. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators[J]. Nano Letters, 2013, 13(6): 2541-2547. DOI: 10.1021/nl400601c

    [23]

    ASGARI S, GRANPAYEH N. Tunable mid-infrared refractive index sensor composed of asymmetric double graphene layer[J]. IEEE Sensors Journal, 2019, 19(14): 5686-5691. DOI: 10.1109/JSEN.2019.2906759

    [24] 李从午, 卞立安. 基于F-P谐振与SPP共振的石墨烯双模吸收波体设计[J]. 激光技术, 2021, 45(4): 507-510. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.015

    LI C W, BIAN L A. Design of graphene double-mode absorber based on F-B resonance and SPP resonance[J]. Laser Technology, 2021, 45(4): 507-510 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.04.015

    [25]

    ZHOU C, LIU G, BAN G, et al. Tunable Fano resonator using multilayer graphene in the near-infrared region[J]. Applied Physics Letters, 2018, 112(10): 101904. DOI: 10.1063/1.5020576

    [26]

    WANG K, FAN W H, CHEN X, et al. Graphene based polarization independent Fano resonance at terahertz for tunable sensing at nanoscale[J]. Optics Communications, 2019, 439(5): 61-65.

    [27]

    LIMA J R F, BARBOSA A L R, BEZERRA C G, et al. Tuning the Fano factor of graphene via Fermi velocity modulation[J]. Physica E: Low-dimensional Systems and Nanostructures, 2018, 97(3): 105-110.

    [28] 卞立安, 刘培国, 陈雨薇, 等. 石墨烯介质堆栈提高系统调控Fano共振能力[J]. 激光技术, 2018, 42(2): 187-191. DOI: 10.7510/jgjs.issn.1001-3806.2018.02.009

    BIAN L A, LIU P G, CHEN Y W, et al. Improvement of system tunability for Fano resonance by graphene-dielectric stack[J]. Laser Technology, 2018, 42(2): 187-191 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2018.02.009

  • 期刊类型引用(5)

    1. 徐一翔,吕勇. 基于生成对抗网络的轻量化图像融合算法. 北京信息科技大学学报(自然科学版). 2024(03): 84-90 . 百度学术
    2. 刘皓皎,刘力双,张明淳. 基于YOLOv5改进的红外目标检测算法. 激光技术. 2024(04): 534-541 . 本站查看
    3. 郭明全,赵景服. YOLOv5-SATC:用于遥感图像目标检测的网络. 信息与电脑(理论版). 2024(15): 18-20 . 百度学术
    4. 吕培强. 电力搭载无人机轻量化应用模式策略研究. 科技创新与应用. 2024(36): 161-164 . 百度学术
    5. 李淼,陈诺,安玮,李博扬,凌强,李卫星. 面向事件相机探测无人机的双视图融合检测方法. 光电工程. 2024(11): 49-59 . 百度学术

    其他类型引用(0)

图(7)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  0
  • PDF下载量:  9
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-12-27
  • 修回日期:  2022-01-25
  • 发布日期:  2023-01-24

目录

    /

    返回文章
    返回