高级检索

基于温度闭环反馈的He-Ne激光器热稳频系统

Thermal frequency stabilization system of He-Ne laser based on temperature closed-loop feedback

  • 摘要: 为了提升激光回馈测量系统中He-Ne激光器的性能, 解决激光回馈镜不断移动时频率无法使用传统方法稳定的技术问题, 采用基于温度反馈控制激光器管体温度的闭环被动稳频的方法, 进行了理论分析和实验验证, 研究了不同管体温度与环境温度差值下频率稳定性。结果表明, 系统最佳温差为25.6℃; 在此温差条件下稳频后, He-Ne激光器波长波动范围达10-4, 即频率稳定性达到1.61×10-7, 功率漂移量低于3.20%。该系统可以根据环境温度的变化调节稳频温度点, 并且稳频结构简单, 满足激光回馈一般应用系统稳定性的要求。

     

    Abstract: In order to improve the performance of the He-Ne laser in the laser feedback measurement system, and solve the technical problem that the frequency cannot be stabilized by traditional methods when the laser feedback mirror is constantly moving, a closed-loop passive frequency stabilization system method based on temperature feedback was adopted to control the temperature of the laser tube, and the theoretical analysis and experimental verification was conducted. The stability of the system under different stabilization temperature and ambient temperature difference was studied. The experimental results show that the best temperature difference of the system is 25.6℃. After frequency stabilization under this temperature difference, the He-Ne laser's wavelength fluctuation range is 10-4, that is, the frequency stability reaches 1.61×10-7, and power drift is less that 3.20%. The system can adjust the frequency stabilization temperature point according to the change of the ambient temperature, and the frequency stabilization structure is simple, meet the requirements of laser feedback for general application system stability.

     

/

返回文章
返回