Processing math: 0%
高级检索

水下无线光通信系统研究进展

王博, 吴琼, 刘立奇, 王涛, 朱仁江, 张鹏, 汪丽杰

王博, 吴琼, 刘立奇, 王涛, 朱仁江, 张鹏, 汪丽杰. 水下无线光通信系统研究进展[J]. 激光技术, 2022, 46(1): 99-109. DOI: 10.7510/jgjs.issn.1001-3806.2022.01.010
引用本文: 王博, 吴琼, 刘立奇, 王涛, 朱仁江, 张鹏, 汪丽杰. 水下无线光通信系统研究进展[J]. 激光技术, 2022, 46(1): 99-109. DOI: 10.7510/jgjs.issn.1001-3806.2022.01.010
WANG Bo, WU Qiong, LIU Liqi, WANG Tao, ZHU Renjiang, ZHANG Peng, WANG Lijie. Research progress on the underwater wireless optical communication system[J]. LASER TECHNOLOGY, 2022, 46(1): 99-109. DOI: 10.7510/jgjs.issn.1001-3806.2022.01.010
Citation: WANG Bo, WU Qiong, LIU Liqi, WANG Tao, ZHU Renjiang, ZHANG Peng, WANG Lijie. Research progress on the underwater wireless optical communication system[J]. LASER TECHNOLOGY, 2022, 46(1): 99-109. DOI: 10.7510/jgjs.issn.1001-3806.2022.01.010

水下无线光通信系统研究进展

基金项目: 

重庆市基础研究与前沿探索项目 cstc2018jcyjAX0319

教育部“蓝火计划”(惠州)产学研联合创新基金资助项目 CXZJHZ201728

发光学及应用国家重点实验室开放项目 SKLA-2019-04

国家自然科学基金资助项目 61904024

重庆市教委科学技术研究重大项目 KJZD-M201900502

重庆市教委科学技术研究项目 KJQN201800528

详细信息
    作者简介:

    王博(1997-),男,硕士研究生,主要从事水下激光通信的研究

    通讯作者:

    王涛,E-mail:wangt@cqnu.edu.cn

  • 中图分类号: TN929.1

Research progress on the underwater wireless optical communication system

  • 摘要: 水下无线光通信作为一种新兴的高速水下无线通信技术,在海洋生态环境监测、资源勘测以及军事作战等方面的作用不可小觑,并已成为全世界竞相争夺的关键性技术。对目前常用的3种水下无线通信方式进行比较,介绍了水下无线光通信的信道特性,并阐述水下无线光通信系统中光源、调制、信道编码以及探测等关键技术的研究进展。总结了水下无线光通信技术的发展趋势,为未来水下无线光通信系统的深入研究和实用化提供了参考。
    Abstract: As a new high speed underwater wireless communication technology, underwater wireless optical communication (UWOC) plays an important role in marine ecological environment monitoring, resource exploration, and military operations, and has become a key technology for competition all over the world. Three kinds of underwater wireless communication modes were compared, the channel characteristics of UWOC were introduced, and the research progress of key technologies such as light source, modulation, channel coding, and detection in UWOC system were described in detail. At the same time, the development trend of UWOC technology was summarized, which provides a reference for further research and practical application of UWOC system in the future.
  • 随着通信速率的不断发展,硅基光调制器在全光信号处理和高速光通信光互连上越来越体现出不可或缺的作用[1-2]。基于Ⅳ族材料(硅,锗)的硅光调制器,按其原理分类有热光型[3-4]、载流子色散型[5-6]和光吸收型[7-9]。而其它新兴的材料平台,也引起了学者们广泛的关注,如硅与Ⅲ-Ⅴ族混合集成的调制器[10-11]、结合2维材料(石墨烯)[12]混合集成的调制器[13-15],以及高性能的电光材料平台,如氮化铝[16-17]、薄膜铌酸锂[18-20]等在集成光调制器中也显示出巨大的潜力。

    上述新材料平台在实际器件制作中都存在与传统CMOS工艺兼容的问题,所以选择Ⅳ族的锗硅材料体系作为研究对象。对于多量子阱体系,研究者发现锗硅量子阱材料中显示出了较强的量子限制斯塔克效应(quantum-confined Stark effect, QCSE)[21]。然而,在Ge/SiGe量子阱的相关研究中,探究吸收系数变化从而引起电致折射率变化的相关实验结果很少。

    本文作者提出并设计了一种非对称耦合量子阱(coupled quantum well, CQW)结构,来增强电致折射率的变化,从而实现高效的相位调制。通过设计两种不同的量子阱宽度来使临近量子阱相互耦合,可以调控耦合量子阱的波函数以及电致折射率的特性,并且实验制作的器件性能优异,实现了偏置电压为1.5 V时,在1530 nm波长处的2.4×10-3电致折射率变化,其对应的VπLπ在1 V偏置电压下低至0.048 V·cm(Vπ为半波电压, Lπ为器件的作用区长度)。

    由于关注器件的电致折射率调制的性能,仿真发现量子阱层材料结构采用非对称的结构设计可以得到更大的吸收边红移。从物理机理的层面分析,即使在没有外加电场作用的情况下,非对称耦合量子阱中电子态和空穴态天然就呈现非对称的分布,主要分布在较宽的量子阱中。由于中间的薄势垒存在,在很低的外电场作用下,电子e1能态就会明显地向窄势阱移动,从而实现较大的波函数分布变化及波函数重叠因子变化,因此非对称耦合量子阱结构在参数优化后可以实现明显的光学相位调制。仿真优化得到的锗硅量子阱材料的整体结构参数如图 1a所示; 其中关键的设计在于8对耦合量子阱的参数选取,如图 1b所示。窄阱为6 nm宽,宽阱为12 nm宽,两阱中间由1.6 nm宽的Si0.1Ge0.9势垒隔开,而势阱外两边都是宽度为12 nm的Si0.15Ge0.85势垒。非对称量子阱采用上述参数可以使得中间薄势垒两边的量子阱(quantum well, QW)达到较强的耦合作用,实现较好的有源区调制性能。

    图 1 a—锗硅耦合量子阱的整体外延设计 b—锗硅非对称耦合量子阱的示意图
    图  1  a—锗硅耦合量子阱的整体外延设计 b—锗硅非对称耦合量子阱的示意图
    Figure  1.  a—epitaxy design of Ge/SiGe CQW  b—sketch of Ge/SiGe asymmetric CQW

    考虑到实际量子阱生长工艺的难度,实现非对称量子阱中心的势垒区厚度的精确控制,工艺上将势垒区厚度从1.6 nm提高到2 nm,势垒区组分由Si0.1Ge0.9修正为Si0.17Ge0.83(硅组分越高,生长速度越慢,厚度更容易调控)。上述参数的微调在理论上只会导致中间势垒两边的量子阱耦合作用轻微下降,从后面的仿真和实验结果也可看出这一调整是合理的。需要强调的是,下面涉及到量子阱参数的仿真和实验分析,都统一基于2 nm厚度Si0.17Ge0.83的结构组分参数。依据实际生长的耦合量子阱结构,结合八能带\boldsymbol{k} \cdot \boldsymbol{p}理论,可以计算得到在量子阱层的光场模式为TE和TM两种情况下的光学吸收谱线,如图 2所示。图 2b图 2a中虚线框放大图;图 2d图 2c中虚线框放大图。从图中可以看出,在TE光模式激发下,由激子引起的吸收峰略多于TM模式激发的吸收峰,并且发现激子数量越多,红移越明显,对应的吸收系数变化也就越大。对比图 2b图 2d可以发现,TE模式的第一吸收带边(约1435 nm)比TM模式更接近长波长。

    图 2 不同电场强度下锗硅非对称耦合量子阱的光吸收谱
    图  2  不同电场强度下锗硅非对称耦合量子阱的光吸收谱
    Figure  2.  Absorption spectrums of asymmetric Ge/SiGe CQW with different applied electrical field

    根据Kramers-Kronig(K-K)关系[22], 如下式所示:

    \Delta n(\nu)=\frac{c}{{\rm{ \mathsf{ π} }} } \int \frac{\Delta \alpha\left(\nu^{\prime}\right)}{\nu^{\prime 2}-\nu^{2}} \mathrm{~d} \nu^{\prime} (1)

    式中, \nu是光波频率; \nu^{\prime}是对应积分\nu变量的范围; c是光速。

    从(1)式可知,吸收系数的变化Δα对应电致折射率的变化Δn,可以由上述吸收谱线变换得到折射率的变化曲线,并进一步分析该调制器的相位调制性能。

    锗硅非对称耦合量子阱的电致折射率变化谱线如图 3所示。从仿真曲线可以看出,TE光模式情况下的电致折射率变化的峰值波长更靠近长波段,并且随着外加电场强度的增加,电致折射率变化的峰值呈现出先增加后减少的趋势。显然,在入射光波长为1450 nm,电场强度为40 kV/cm的情况下,TE光模式入射导致的最大电致折射率变化可达0.01,并且显著大于通常的锗硅耦合量子阱。由上述仿真数值可以计算得到,当波长大于1450 nm时,该相位调制器的VπLπ可以接近0.01 V·cm量级。值得注意的是,当电场强度达到60 kV/cm时,TE和TM模式在相应第一吸收边带波长范围内都呈现两个局部极值。这一现象在图 2中也有所反映,这是因为在较强的电场强度下,原先的第二激子峰红移很多,接近原第一吸收边带的位置,从而形成两个明显的吸收边带, 第一和第二吸收带边在不同波长处就会导致两个折射率变化峰值。

    图 3 不同电场强度下锗硅非对称耦合量子阱的电致折射率变化谱线
    图  3  不同电场强度下锗硅非对称耦合量子阱的电致折射率变化谱线
    Figure  3.  Electrorefractive index variation of asymmetric Ge/SiGe CQW with different applied electrical field

    锗硅非对称耦合量子阱的整体外延方案如图 1b所示,这里采用减压化学气相沉积(reduced pressure chemical vapour deposition,RPCVD)的方法来逐层外延量子阱层材料。外延得到的基片材料经过波导刻蚀,电极生长,端面刻蚀,划片解理后就可以用于测试,测试的器件示意图和系统装置如图 4所示。这里采用放大自发辐射(amplified spontaneous emission, ASE)宽谱光源来测试调制器的宽谱响应,数字源表(digital source meter, DSM)连接的直流探针用来给调制器施加直流偏压,同时计算机连接光谱仪(optical spectrum analyzer, OSA)直接采集光谱数据。

    图 4 相位调制测试的系统装置图
    图  4  相位调制测试的系统装置图
    Figure  4.  Experimental setup of phase modulation

    由于整个器件在直波导两端面正对的方向上可以看作一个法布里-珀罗(Fabry-Pérot, F-P)干涉仪,因此光谱响应呈现出与波长相关的干涉波纹,从干涉峰波长的漂移变化Δλ就可以导出有效折射率Δneff的变化,如以下公式所示:

    \Delta n_{\text {eff }}(\lambda)=\frac{\Delta \lambda}{\lambda} n_{\mathrm{g}}(\lambda) (2)
    n_{\mathrm{g}}\left(\lambda_m\right)=\frac{\lambda_m{ }^2}{2 L \Delta \lambda_m} (3)

    式中, n_{\mathrm{g}}为光模式的群折射率; L表示整个器件的长度, 包括被调制部分和两端雉形波导的长度之和, 约为360 \mu \mathrm{m}, L越短, 实验中能观测到的干涉峰波长间隔(纵模间隔) \Delta \lambda_{m}就越明显, \lambda_{m}的下标m表示整数, 对应不同的纵模波长。

    图 5所示,给出了光波长在1520 nm~1540 nm范围内,光谱响应随着施加偏置电压的变化。已将不同曲线的纵坐标基准做适当整体偏移, 以便于比较。随着反偏电压的增加,干涉峰的波长逐步漂移,当电压达到1.5 V附近时,干涉峰的漂移接近一个周期。从波长漂移量可以导出折射率的变化。结果显示,在1.5 V偏压的情况下,波长1530 nm处的电致折射率变化分别是2.4×10-3,该调制器对应的VπLπ低至0.048 V·cm,显示该器件具有高效的光调制性能。由于实验设备的限制,光源波长限定在光通信C波段,而没有给出1450 nm波段附近器件的相位调制性能,但从仿真结果中分析可知,1450 nm波段的电致折射率变化远大于1530 nm处,可以得到更优的相位调制效果。

    图 5 在反向偏置电压变化时,光通信C波段的光谱响应
    图  5  在反向偏置电压变化时,光通信C波段的光谱响应
    Figure  5.  Spectral response at optical communication C-band under different reverse bias voltage

    下面将实验结果与前人的工作进行对比,如表 1所示。可以发现,本文中的实验结果相对于普通锗硅耦合量子阱[23]的工作能耗很低,只需要1.5 V偏压就可以带来很明显的调制效果;相对于对称的锗硅耦合量子阱[24]的调制波长范围更广,不仅在1450 nm处有很强的吸收变化,甚至可以将调制波段扩展至光通信C波段,依然能体现出优越的器件性能。

    表  1  锗硅调制器性能对比
    Table  1.  Comparison of this work and other reported Ge/SiGe modulators
    structural composition bias voltage/V wavelength/nm index variation VπLπ/(V·cm)
    reference [23] Ge/Si0.15Ge0.85 MQW 8 1475 1.3×10-3 0.46
    reference [24] 7×[7 nm Ge QW+1.5 nm Si0.15Ge0.85 inner barrier+7 nm Ge QW+26 nm Si0.15Ge0.85 outer barrier] 1.5 1420 2.3×10-3 0.046
    our study 8×[6 nm Ge QW+2 nm Si0.17Ge0.83 inner barrier+12 nm Ge QW+12 nm Si0.15Ge0.85 outer barrier] 1.5 1530 2.4×10-3 0.048
    下载: 导出CSV 
    | 显示表格

    提出了一种锗硅非对称耦合量子阱的设计,用于实现高效的电致折射率相位调制,不仅在理论仿真上给出锗硅非对称耦合量子阱调制器的理想调制性能,并且在实验上成功制备了对应的器件,实验结果与理论高度吻合。结果表明,相比于同类型的硅基调制器,设计的锗硅非对称耦合量子阱调制器在1530 nm波段的电致折射率变化达到2.4×10-3,其工作波段范围理论上可以覆盖1450 nm~1530 nm,这给未来硅基光调制器的发展开辟了新的方向。

  • 图  1   海水在蓝绿光波段的低损耗窗口[11]

    图  2   沙特阿卜杜拉国王科技大学的实验框图[18]

    图  3   归一化接收功率幅度和传输距离、发散角之间的关系[29]

    a—纯海水  b—清澈海水  c—沿海海水  d—浑浊海港水

    图  4   海水光学性质的几何结构

    图  5   水下无线光通信系统法的一般模型

    图  6   a—美国麻省理工学院实验所用的光源[38]  b—英国思克莱德大学实验采用微型LED阵列[39]

    图  7   近年蓝绿光水下水下无线通信的部分研究成果

    a—LED/LED阵列  b—LD

    图  8   OFDM系统原理框图

    图  9   光斑被遮挡时跟踪结果[75]

    a~f—1组序列  g—实际与跟踪的轨迹对比

    图  10   在不同传输功率Pt、不同衰减系数的水质以及不同探测器时,误比特率随距离z的变化[81]

    a—PIN  b—APD

    表  1   3种水下无线通信方式

    参数 声通信 射频通信 光通信
    传输速率 kbit/s Mbit/s Gbit/s
    传输距离 km 10m 10m~100m
    通信容量
    时延
    衰减 小(蓝绿光)
    带宽
    功耗
    下载: 导出CSV

    表  2   4种海水类型的相关系数

    海水类型 a b c
    纯海水 0.053 0.003 0.056
    清澈海水 0.114 0.037 0.151
    沿海海水 0.179 0.219 0.398
    浑浊海水 0.295 1.875 2.17
    下载: 导出CSV

    表  3   发射端光源的性能比较

    参数 LED LD
    最小输出光束发散角 约0.5° 约0.01°
    调制带宽 小于200MHz 大于1GHz
    温度敏感性 不敏感 敏感
    使用寿命 适中
    相干性 不相干 相干
    功耗
    安全性
    下载: 导出CSV

    表  4   近年高阶QAM-OFDM调制下的水下无线光通信研究成果

    时间 调制格式 接收器 传输速率 距离/m
    2015年[18] 16-QAM-OFDM APD 4.8Gbit/s 5.4
    2015年[61] 64-QAM-OFDM APD 9Gbit/s 5
    2016年[62] 16-QAM-OFDM APD 3.2Gbit/s 6.6
    2016年[63] 16-QAM-OFDM PIN 7.2Gbit/s 6.8
    2017年[63] 32-QAM-OFDM APD 5.5Gbit/s 26
    2017年[64] 16-QAM-OFDM APD 14.8Gbit/s 1.7
    2018年[52] 16-QAM-OFDM PD 9.6Gbit/s 8
    2018年[65] 128-QAM-OFDM APD 2.92Gbit/s 12.5
    2019年[66] 32-QAM-OFDM MPPC 312.03Mbit/s 21
    2020年[67] 128-QAM-OFDM APD 6.23Gbit/s 3
    下载: 导出CSV

    表  5   探测器性能比较

    参数 PIN APD PMT
    灵敏度 低(μW) 适中(nW) 高(pW)
    探测面积
    响应速度 超快
    体积
    安全性 易碎
    等效噪声功率 极低
    使用成本 适中
    下载: 导出CSV
  • [1]

    KE X Zh, XI X L. Introduction to wireless laser communication[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2004: 1-27(in Chinese).

    [2]

    LI X F. The Principle and technology of the satellite-to-ground laser communication links[M]. Beijing: National Defense Industry Press, 2007: 6-46(in Chinese).

    [3]

    CHEN Y F. Experimental research on air-water wireless optical communication[D]. Hangzhou: Zhejiang University, 2018: 1-3(in Ch-inese).

    [4]

    CHI N, HU F Ch, ZHOU Y J. The challenges and prospects of high-speed visible light communication technology[J]. ZTE Technology Journal, 2019, 25(5): 56-61(in Chinese).

    [5]

    STOJANOVIC M. Recent advances in high-speed underwater acoustic communication[J]. IEEE Journal of Oceanic Engineering, 1996, 21(2): 125-136. DOI: 10.1109/48.486787

    [6]

    CHE X H, WELLS I, DICKERS G, et al. Re-evaluation of RF electromagnetic communication in underwater sensor networks[J]. IEEE Communications Magazine, 2011, 48(12): 143-151. http://dl.acm.org/citation.cfm?id=1938675

    [7]

    CHOWDHURY M Z, HOSSAN M T, ISLAM A, et al. A comparative survey of optical wireless technologies: Architectures and applications[J]. IEEE Access, 2018, 6: 9819-9840. DOI: 10.1109/ACCESS.2018.2792419

    [8]

    XU X M. Development and applications of underwater acoustic communication and networks[J]. Technical Acoustics, 2009, 28(6): 811-816(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SXJS200906030.htm

    [9]

    LIU Z H, WU X F, XU J P, et al. Fifteen years of ocean observations with China Argo[J]. Advances in Earth Science, 2016, 31(5): 445-460(in Chinese). http://www.nature.com/articles/nclimate2872

    [10]

    DUNTLEY S Q. Light in the Sea*[J]. Journal of the Optical Socie-ty of America, 1963, 53(2): 214-233. DOI: 10.1364/JOSA.53.000214

    [11]

    JACOBSON T. Phys104-how things work[EB/OL]. (2008-11-18)[2021-01-29]. http://www.physics.umd.edu/grt/taj/104a/104anotessupps.html.

    [12]

    WANG J M, LU Ch H, LI S B, et al. 100m/500Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J]. Optic Express, 2019, 27(9): 12171-12181. DOI: 10.1364/OE.27.012171

    [13]

    WIENER T F, KARP S. The role of blue/green laser systems in strategic submarine communications[J]. IEEE Transactions on Communications, 1980, 28(9): 1602-1607. DOI: 10.1109/TCOM.1980.1094858

    [14]

    TAN X Y. Role and future of laser technique for U-boat communication[J]. Laser Technology, 1993, 17(4): 232-238(in Chinese). http://www.researchgate.net/publication/297300378_Role_and_future_of_laser_technique_for_submarine_communication

    [15]

    CHARLES C W. A 1Mbps underwater communication system using a 405nm laser diode and photomultiplier[D]. Raleigh, North Carolina, USA: North Carolina State University, 2007: 68-73.

    [16]

    RADICS H. High bandwidth underwater optical communication[J]. Applied Optics, 2008, 47(2): 277-283. DOI: 10.1364/AO.47.000277

    [17]

    NAKAMURA K, MIZUKOSHI I, HANAWA M. Optical wireless transmission of 405nm, 1.45Gbit/s optical IM/DD-OFDM signals through a 4.8m underwater channel[J]. Optics Express, 2015, 23(2): 1558-1566. DOI: 10.1364/OE.23.001558

    [18]

    OUBEI H M, LI C P, PARK K H, et al. 2.3Gbit/s underwater wireless optical communications using directly modulated 520nm laser diode[J]. Optics Express, 2015, 16(23), 20743-20748. DOI: 10.1364/oe.23.020743

    [19]

    SAWA T. Study of adaptive underwater optical wireless communication with photomultiplier tube[R]. Suruga bay, Japan: Japan Agency for Marine-Earth Science and Technology, 2017: 1-15.

    [20]

    HUANG X Sh, WANG R L, XU R Sh, et al. Underwater laser communication transmitting and receiving system[J]. Journal of Ocean University of Qingdao, 1998, 28(4): 140-145(in Chinese).

    [21]

    HE N, LI H L, ZHANG D K, et al. The multiple diversity reception of signal under water in laser communication[J]. Laser & Infrared, 2002, 32(4): 228-229(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGHW200204005.htm

    [22]

    CHEN Y F, KONG M W, ALI T, et al. 26m/5.5Gbit/s air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode[J]. Optics Express, 2017, 25(13): 14760-14765. DOI: 10.1364/OE.25.014760

    [23]

    HAN S Q, WANG Zh, CHEN H, et al. Image-based geometric shaping 16QAM DMT coded visible light communication[J]. China Light & Lighting, 2020(6): 16-21(in Chinese).

    [24]

    CHEN M, ZOU P, ZHANG L, et al. Demonstration of a 2.34Gbit/s real-time single silicon-substrate blue LED based underwater VLC system[J]. IEEE Photonics Journal, 2020, 12(1): 7900211. http://ieeexplore.ieee.org/document/8935430/

    [25]

    KAUSHAL H, KADDOUM G. Underwater optical wireless communication[J]. IEEE Access, 2016, 4: 1518-1547. DOI: 10.1109/ACCESS.2016.2552538

    [26]

    MOBLEY C D. Light and water: Radiative transfer in natural waters[M]. New York, USA: Academic Press, 1994: 1-5.

    [27]

    JOHNSON L J, JASMAN F, GREEN R J, et al. Recent advances in underwater optical wireless communications[J]. Underwater Technology, 2014, 32(3): 167-175. DOI: 10.3723/ut.32.167

    [28]

    SPINRAD R W, CARDER K L, PERRY M J. Ocean optics[M]. Oxford, UK: Clarendon Press, 1994: 1-10.

    [29]

    WU Q, WANG B, WANG T, et al. Monte Carlo method-based analysis of underwater wireless optical transmission characteristics[J]. Acta Photonica Sinica, 2021, 50(4): 0406002(in Chinese).

    [30]

    GUSSEN C M G, DINIZ P S R, CAMPOS M L R, et al. A survey of underwater wireless communication technologies[J]. Journal of Communication and Information System, 2016, 31(1): 242-255. DOI: 10.14209/jcis.2016.22

    [31]

    MOBLEY C D, GENTILI B, GORDON H R, et al. Comparison of numerical models for computing underwater light fields[J]. Applied Optics, 1993, 32(36): 7484-7504. DOI: 10.1364/AO.32.007484

    [32]

    WANG W, WANG P, CAO T, et al. Performance investigation of underwater wireless optical communication system using M-ary OAMSK modulation over oceanic turbulence[J]. IEEE Photonics Journal, 2017, 9(5): 1-15. http://www.researchgate.net/profile/Wang_Ping12/publication/318474571_Performance_investigation_of_underwater_wireless_optical_communication_system_using_M-ary_OAMSK_modulation_over_oceanic_turbulence/links/597bc473a6fdcc1a9a84022d/Performance-investigation-of-underwater-wireless-optical-communication-system-using-M-ary-OAMSK-modulation-over-oceanic-turbulence.pdf

    [33]

    HE G, LV Zh J, QIU Ch F, et al. Performance evaluation of 520nm laser diode underwater wireless optical communication systems in the presence of oceanic turbulence[J]. SID Symposium Digest of Technical Papers, 2020, 51(s1): 47-50. DOI: 10.1002/sdtp.13748

    [34]

    FU Y Q, HUANG Ch T, DU Y Zh. Effect of aperture averaging on mean bit error rate for UWOC system over moderate to strong oceanic turbulence[J]. Optics Communications, 2019, 451: 6-12. DOI: 10.1016/j.optcom.2019.06.030

    [35]

    WU J. Study and implementation of underwater wireless optical communication system[D]. Xiamen: Xiamen University, 2014: 31-38 (in Chinese).

    [36]

    KONG M W. Design and experiment study of underwater wireless optical communication system[D]. Hangzhou: Zhejiang University, 2018: 6-8(in Chinese).

    [37]

    CHI N. LED visible light communication technologies[M]. Beijing: Tsinghua University Press, 2013: 70-75 (in Chinese).

    [38]

    DONIEC M, VASILESCU I, CHITRE M, et al. AquaOptical: A lightweight device for high-rate long-range underwater point-to-point communication[C]//Proceedings of OCEANS 2009. New York, USA: IEEE, 2009: 1-6.

    [39]

    ARVANITAKIS G N, BIAN R, MCKENDRY J J D, et al. Gb/s underwater wireless optical communications using series-connected GaN micro-LED arrays[J]. IEEE Photonics Journal, 2020, 12(2): 1-10. http://ieeexplore.ieee.org/document/8932549

    [40]

    HEATHER B. Designing a wireless underwater optical communication system[D]. Boston, USA: Massachusetts Insttute of Technology, 2010: 1-8.

    [41]

    CHEN X, LYU W Ch, ZHANG Z J, et al. 56m/3.31Gbps underwater wireless optical communication employing Nyquist single carrier frequency domain equalization with noise prediction[J]. Optics Express, 2020, 28(16): 23784-23795. DOI: 10.1364/OE.399794

    [42]

    XU J, KONG M W, LIN A B, et al. OFDM-based broadband underwater wireless optical communication system using a compact blue LED[J]. Optics Communications, 2016, 369(6): 100-105. http://smartsearch.nstl.gov.cn/paper_detail.html?id=d8f68cb18b26126a43ea1bbed45576a8

    [43]

    TIAN P F, LIU X Y, YI S Y, et al. High-speed underwater optical wireless communication using a blue GaN-based micro-LED[J]. Optics Express, 2017, 25(2): 1193-1201. DOI: 10.1364/OE.25.001193

    [44]

    ZHUANG B Y, LI C, WU N, et al. First demonstration of 400Mb/s PAM4 signal transmission over 10 meter underwater channel using a blue LED and a digital linear pre-equalizer[C]//2017 Conference on Lasers and Electro-Optics (CLEO). New York, USA: IEEE, 2017: 17311399.

    [45]

    WANG F M, LIU Y F, JIANG F Y, et al. High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception[J]. Optics Communications, 2018, 425: 106-112. DOI: 10.1016/j.optcom.2018.04.073

    [46]

    CHI N, ZHAO Y H, SHI M, et al, Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system[J]. Optics Express, 2018, 26(20): 26700-26712. DOI: 10.1364/OE.26.026700

    [47]

    LU I C, LIU Y C. 205Mb/s LED-based underwater optical communication employing OFDM modulation[C]//2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO). New York, USA: IEEE, 2018: 18323039.

    [48]

    HAN B, ZHAO W, ZHENG Y, et al. Experimental demonstration of quasi-omni-directional transmitter for underwater wireless optical communication based on blue LED array and freeform lens[J]. Optics Communication, 2019, 434: 184-190. DOI: 10.1016/j.optcom.2018.10.037

    [49]

    WANG F M, LIU Y F, SHI M, et al. 3.075Gb/s underwater visible light communication utilizing hardware pre-equalizer with multiple feature points[J]. Optical Engineering, 2019, 58(5): 1-9. http://d.wanfangdata.com.cn/periodical/71ff44165d1e48dc63100c5e6bc2bb14

    [50]

    ZHAO Y H, ZOU P, CHI N. 3.2Gbps underwater visible light communication system utilizing dual-branch multi-layer perceptron based post-equalizer[J]. Optics Communications, 2020, 460: 125197-125208. DOI: 10.1016/j.optcom.2019.125197

    [51]

    XU J, SONG Y H, YU X Y, et al. Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser[J]. Optics Express, 2016, 24(8): 8097-8109. DOI: 10.1364/OE.24.008097

    [52]

    LI Ch Y, LU H H, TSAI W Sh, et al. A 5m/25Gbit/s underwater wireless optical communication system[J]. IEEE Photon Journal, 2018, 10(3): 1-9. http://www.onacademic.com/detail/journal_1000039521476410_ad52.html

    [53]

    FEI C, HONG X J, ZHANG G W, et al. 16.6Gbit/s data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization[J]. Optics Express, 2018, 26(26): 34060-34069. DOI: 10.1364/OE.26.034060

    [54]

    FEI C, ZHANG J W, ZHANG G W, et al. Demonstration of 15m 7.33Gb/s 450nm underwater wireless optical discrete multitone transmission using post nonlinear equalization[J]. Journal of Lightwave Technology, 2018, 36(3): 728-734. DOI: 10.1109/JLT.2017.2780841

    [55]

    HONG X J, FEI C, ZHANG G W, et al. Discrete multitone transmission for underwater optical wireless communication system using probabilistic constellation shapin 5.5g to approach channel capacity limit[J]. Optics Letters, 2019, 44(3): 558-561. DOI: 10.1364/OL.44.000558

    [56]

    LU Ch H, WANG J M, LI Sh B, et al. 60m/2.5Gbps underwater optical wireless communication with NRZ-OOK modulation and digital nonlinear equalization[C]//2019 Conference on Lasers and Electro-Optics (CLEO). New York, USA: IEEE, 2019: 1-2.

    [57]

    CHEN H L, CHEN X W, LU J, et al. Toward long-distance underwater wireless optical communication based on a high sensitivity single photon avalanche diode[J]. IEEE Photonics Journal, 2020, 12(3): 1-10. http://ieeexplore.ieee.org/document/9057454

    [58]

    HO Ch M, LU Ch K, LU H H, et al. A 10m/10Gbps Underwater Wireless Laser Transmission System[C]// 2017 Optical Fiber Communications Conference & Exhibition. New York, USA: IEEE, 2017: 1-3.

    [59]

    LU H H, LI CH Y, LIN H H, et al. An 8m/9.6Gbit/s underwater wireless optical communication system[J]. IEEE Photonics Journal, 2016, 8(5): 1-7. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7547906

    [60]

    HONG W X, YU Zh, WEI W, et al. Evolution of the short-range visible light communications & IEEE802.15.7[J]. Optical Communication Technology, 2013, 37(7): 4-7(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GTXS201307002.htm

    [61]

    CHI Y Ch, HSIEH D H, TSAI Ch T, et al. 450nm GaN laser diode enables high-speed visible light communication with 9-Gbp QAM-OFDM[J]. Optics Express, 2015, 23(10): 13051-13059. DOI: 10.1364/OE.23.013051

    [62]

    OUBEI H M, DURÁN J R, JANJUA B, et al. Wireless optical transmission of 450nm, 3.2Gbit/s 16-QAM-OFDM signals over 6.6m underwater channel[C]//2016 Conference on Lasers and Electro-Optics (CLEO). New York, USA: IEEE, 2016: 1-2.

    [63]

    WU T Ch, CHI Y Ch, WANG H Y, et al. Blue laser diode enables underwater communication at 12.4Gbit/s[J]. Scientific Reports, 2017, 7(1): 40480. DOI: 10.1038/srep40480

    [64]

    HUANG Y F, TSAI C T, CHI Y Ch, et al. Filtered multicarrier OFDM encoding on blue laser diode for 14.8Gbps seawater transmission[J]. Journal of Lightwave Technology, 2018, 36(9): 1739-1745. DOI: 10.1109/JLT.2017.2782840

    [65]

    ZHANG L, WANG H, SHAO X. Improved m-QAM-OFDM transmission for underwater wireless optical communications[J]. Optics Communications, 2018, 423: 180-185. DOI: 10.1016/j.optcom.2018.04.026

    [66]

    WANG J L, YANG X Q, LV W Ch, et al. Underwater wireless optical communication based on multi-pixel photon counter and OFDM modulation[J]. Optics Communications, 2019, 451: 181-185. DOI: 10.1016/j.optcom.2019.06.053

    [67]

    GUO Y R, WANG X Q, FU M Sh. QAM-OFDM transmission in underwater wireless optical communication system with limited resolution DAC[J]. Optical and Quantum Electronics, 2020, 52(9): 419-426. DOI: 10.1007/s11082-020-02529-9

    [68]

    COX W C, SIMPSON J A, DOMIZIOLI C P, et al. An underwater optical communication system implementing Reed-Solomon channel coding[C]//Oceans 2008. New York, USA: IEEE, 2008: 5151992.

    [69]

    WANG W P, ZHENG B. The simulation design of led-based close-range underwater optical communication system[C]//2013 10th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). New York, USA: IEEE, 2013: 283-285.

    [70]

    DONIEC M, ANGERMANN M, RUS D. An end-to-end signal strength model for underwater optical communications[J]. IEEE Journal of Oceanic Engineering, 2013, 38(4): 743-757. DOI: 10.1109/JOE.2013.2278932

    [71]

    CHEN S, SONG J L, YUAN Z M, et al. Diver communication system based on underwater optical communication[J]. Applied Mechanics and Materials, 2014, 621: 259-263. DOI: 10.4028/www.scientific.net/AMM.621.259

    [72]

    PEPPAS K P, BOUCOUVALAS A C, GHASSEMLOY Z, et al. Semiconductor optical amplifiers for underwater optical wireless communications[J]. IET Optoelectronics, 2017, 11(1): 15-19. DOI: 10.1049/iet-opt.2016.0010

    [73]

    EVERETT J. Forward-error correction coding for underwater free-space optical communication[D]. North Carolina, USA: North Carolina State University, 2009: 1-5.

    [74]

    LIU H, YANG Y, YIN Y F, et al. Alignment control algorithm of underwater LD communication based on EKF[J]. Acta Photonica Sinica, 2020, 49(4): 137-145(in Chinese). http://ieeexplore.ieee.org/document/9257016

    [75]

    HE F T, LI S J, YANG Y, et al. Receiver alignment system based on underwater spot tracking[J]. Acta Photonica Sinica, 2020, 49(10): 1001002(in Chinese). DOI: 10.3788/gzxb20204910.1001002

    [76]

    LIU L L. Research on channel estimation technologies in optical OFDM transmissions[D]. Shanghai: Shanghai Jiao Tong University, 2013: 13-18(in Chinese).

    [77]

    HU S Q, MI L, ZHOU T H, et al. Viterbi equalization for long-distance, high-speed underwater laser communication[J]. Optical Engineering, 2017, 56(7): 076101. DOI: 10.1117/1.OE.56.7.076101

    [78]

    HU S Q, ZHOU T H, CHEN W B. Performance analysis and simulation of maximum ratio combining in underwater laser communication[J]. Chinese Journal of Lasers, 2016, 43(12): 1206003 (in Chinese). DOI: 10.3788/CJL201643.1206003

    [79]

    HU X H, HU S Q, ZHOU T H, et al. Rapid estimation of the maximum communication distance for an underwater laser communication system[J]. Chinese Journal of Lasers, 2015, 42(8): 0805007. DOI: 10.3788/CJL201542.0805007

    [80]

    LI Y Ch, SAFARI M, HENDERSON R, et al. Optical OFDM with single-photon avalanche diode[J]. IEEE Photonics Technology Le-tters, 2015, 27(9): 943-946. DOI: 10.1109/LPT.2015.2402151

    [81]

    GABRIEL C, KHALIGHI M A, BOURENNANE S, et al. Monte-Carlo-based channel characterization for underwater optical communication Systems[J]. Journal of Optical Communications & Network-ing, 2013, 5(1): 1-12. http://ieeexplore.ieee.org/document/6413540

  • 期刊类型引用(12)

    1. 凌军荣,周有福,洪茂椿. 荧光陶瓷研制及其照明与显示应用进展. 硅酸盐学报. 2024(03): 1023-1042 . 百度学术
    2. 蒋立荣,李龙光. 基于IM-DD的无线光信道容量分析. 北京邮电大学学报. 2024(02): 137-142 . 百度学术
    3. 王国庆,闵锐,李兴泉,张海平,赵方,邵理阳,沈平. 双通道加密自由空间光通信系统. 光电工程. 2024(09): 43-53 . 百度学术
    4. 王凤英,王昕,秦岭,胡晓莉. 基于CPPM-RSSI算法的可见光室内定位技术研究. 传感器与微系统. 2023(07): 66-69+73 . 百度学术
    5. 贺锋涛,王乐莹,王晓波,杨祎,李碧丽. 基于改进的AdaBoost无线光通信信号检测算法. 激光技术. 2023(05): 659-665 . 本站查看
    6. 钟志,张炳超,于蕾,单明广,薛睿. 基于蓝光LED的水下远距离通信系统设计. 实验技术与管理. 2023(08): 7-12 . 百度学术
    7. 和一帆,陈武,狄志刚,王晖瑜,黄渤,孙吉星,金曦,杨岳澄,陈亚林,宋强,刘凤庆,孔祥峰. 海洋水下近距离无线通信技术研究进展. 新技术新工艺. 2023(11): 1-7 . 百度学术
    8. 任秀云,李秀娜,张延超,张志华,欧阳辰穗,唐子帆. 基于直流偏置光正交频分复用的水下光通信自适应光强探测电路设计. 光学学报. 2023(24): 159-168 . 百度学术
    9. 杨彦甫,李苑青. 基于mini-LED的光无线通信实验平台建设. 实验技术与管理. 2022(04): 116-119+133 . 百度学术
    10. 张家梁,高冠军,王君健. 噪声光下的水下无线光通信理论与实验验证. 北京邮电大学学报. 2022(03): 102-106 . 百度学术
    11. 李博骁,张峰,田蕾,聂杰文,杨海宁. 基于遗传算法的水下光传输优化. 电子器件. 2022(03): 636-639 . 百度学术
    12. 李知恒,周锋,杨文俊. 一种光通信数字图像传输系统的设计与实现. 电子测量技术. 2022(16): 171-175 . 百度学术

    其他类型引用(15)

图(10)  /  表(5)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  1
  • PDF下载量:  16
  • 被引次数: 27
出版历程
  • 收稿日期:  2021-01-21
  • 修回日期:  2021-02-06
  • 发布日期:  2022-01-24

目录

/

返回文章
返回