高级检索

紫外荧光法SO2监测仪激发光光路的设计仿真

Design and simulation of excitation light path of SO2 monitor by ultraviolet fluorescence

  • 摘要: 为了解决国内传统的SO2检测仪存在气室的荧光检测区域荧光强度低、进而导致仪器监测精度低的问题,设计了新的激发光光路结构。在该光路结构中,点光源通过平凸透镜准直,利用一窄缝消除竖直方向上的远轴光线,通过一双凸透镜汇聚到气室荧光采集区域的中心,并利用光阑减小杂散光的干扰。采用射线追踪算法作为严格矢量分析的工具,对设计的光路进行仿真分析。结果表明,优化后的光路使得激发光的能量损失降到了10%,且弥散斑也大为减小;用该光路与传统结构的光路进行实验对比,其示值误差由0.34%满量程变为0.18%满量程,质量浓度为100μg/L时的精密度由1.13μg/L变为0.53μg/L,质量浓度为400μg/L时的精密度由2.26μg/L变为1.1μg/L,两项指标均得到了提高。所设计的激发光光路结构能够有效解决传统光路的不足之处。

     

    Abstract: The traditional SO2 detector in China has the problem of low fluorescence intensity in the fluorescence detection area of the gas chamber, which leads to the low monitoring accuracy of the instrument. In order to solve this problem, a new excited optical path structure was designed. In the light path structure, the point light source was collimated by a plane convex lens, and a narrow slit was used to eliminate the far-axis light in the vertical direction. The point light source was converged to the center of the gas chamber fluorescence collection area by a double convex lens, and the interference of stray light was reduced by the diaphragm. The ray tracing algorithm was used as a tool of strict vector analysis to simulate the designed optical path. The results show that the optimized optical path can reduce the energy loss of excitation light to 10%, and the dispersion spot is also greatly reduced. The experimental results show that the indication error of the optical path is changed from 0.34% full scale to 0.18% full scale. The precision of 100μg/L changed from 1.13μg/L to 0.53μg/L. The precision at 400μg/L changed from 2.26μg/L to 1.1μg/L. The two indexes have been improved, which can effectively solve the shortcomings of the traditional optical path.

     

/

返回文章
返回