Evaluation of beam quality of semiconductor lasers by beam parameter product
-
摘要: 为了解决传统方法中用光束参量积来评估激光光束质量的不足,基于半导体激光器的光束特性,采用了光束参量积Mq2因子来评估半导体激光器光束质量,进行了理论分析和实验验证,取得了快轴准直焦距(FAC)分别为1100μm和600μm的各6个组合光束以及FAC为600μm的10个组合光束的有效焦距长度数据。结果表明,L//和θ⊥的变化越明显,光束质量参量积Mq2因子的变化越明显;测量值和计算值之间的误差小于5%。这一结果对高能激光的光束质量评估是有帮助的。Abstract: In order to solve the deficiency of the traditional evaluation method of beam parameter product on laser beam quality, based on the characteristics of semiconductor laser beam, the effective focal length data of 6 combined beams of fast axis collimator (FAC) with focal length 1100μm, 6 combined beams of FAC with focal length 600μm, and 10 combined beams of FAC with focal length 600μm were obtained. The theoretical analysis and experimental verification were carried out. The results show that the more obvious the change of L// and θ⊥ is, the more obvious the change of beam parameter product of beam quality is. The error between the measured value and the calculated value is generally less than 5%. This result is helpful for evaluating the beam quality of high energy laser.
-
Keywords:
- lasers /
- beam quality /
- collimating /
- focusing lens
-
-
Table 1 Measurements and calculations for 6 combined beams using an 1100μm FAC (N⊥=6, N//=1, As=0)
parameter measurement calculation difference/% EFL of 100.1mm L⊥/μm 149.0 138.6 6.1 L///μm 811.0 801.4 7.2 N⊥·θ⊥/mrad 6.2 6.2 0.1 N//·θ///mrad 0.7 0.7 1.9 Mq2/(mm·mrad) 7.8 7.8 0.4 EFL of 49.8mm L⊥/μm 81.3 69.8 9.1 L///μm 382.6 402.6 2.9 N⊥·θ⊥/mrad 12.4 9 0.2 N//·θ///mrad 0.7 0.9 1.8 Mq2/(mm·mrad) 15.4 14.3 4.1 EFL of 8mm L⊥/μm 12.9 12.4 14.1 L///μm 59.4 59.8 0.9 N⊥·θ⊥/mrad 71.3 70.5 0.2 N//·θ///mrad 6.2 6.5 1.9 Mq2/(mm·mrad) 89.7 79.6 8.1 Table 2 Measurements and calculations for 6 combined beams using a 600μm FAC (N⊥=6, N//=1, As=0)
parameter measurement calculation difference/% EFL of 100.1mm L⊥/μm 301.1 284.3 4.1 L///μm 698.9 785.6 6.3 N⊥·θ⊥/mrad 2.9 3.2 1.1 N//·θ///mrad 0.4 0.6 0.8 Mq2/(mm·mrad) 3.1 3.1 2.1 EFL of 49.8mm L⊥/μm 151.2 142.6 5.2 L///μm 402.4 412.7 4.1 N⊥·θ⊥/mrad 5.9 5.9 1.3 N//·θ///mrad 0.9 0.9 1.0 Mq2/(mm·mrad) 4.8 4.6 2.9 EFL of 8mm L⊥/μm 12.9 19.9 2.9 L///μm 62.7 63.5 0.9 N⊥·θ⊥/mrad 40.1 39.4 1.3 N//·θ///mrad 5.9 5.6 1.0 Mq2/(mm·mrad) 29.8 26.8 4.2 Table 3 Measurements and calculations for 10 combined beams using a 600μm FAC (N⊥=6, N//=1, As=0)
parameter measurement calculation difference/% EFL of 100.1mm L⊥/μm 286.2 259.2 4.1 L///μm 741.9 769.3 4.9 N⊥·θ⊥/mrad 9.1 7.9 0.3 N//·θ///mrad 0.4 0.4 1.9 Mq2/(mm·mrad) 22.6 22.6 0.2 EFL of 49.8mm L⊥/μm 139.7 129.5 6.1 L///μm 402.4 421.1 3.9 N⊥·θ⊥/mrad 17.1 17.0 0.4 N//·θ///mrad 0.8 0.8 1.9 Mq2/(mm·mrad) 51.6 49.8 2.1 EFL of 8mm L⊥/μm 19.9 18.7 2.8 L///μm 59.2 59.8 0.8 N⊥·θ⊥/mrad 122.6 122.1 0.3 N//·θ///mrad 5.8 5.3 1.9 Mq2/(mm·mrad) 305.9 303.4 1.6 -
[1] CAO Ch, WEBER H. The problem with M2[J]. Optics & Laser Technology, 2016, 32(8):221-224. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_06356e359b61d966288d66ec65e37076
[2] GAO X, OHASHI H, OKAMOTO H. Beam-shaping technique for improving the beam quality of a high-power laser-diode stack[J]. Optics Letters, 2016, 31(12):1654-1656. http://www.ncbi.nlm.nih.gov/pubmed/16688251
[3] SHAO N, ZHU X, ZHU G Zh, et al. Study on jet array impingement cooling for crystal module of thin disk laser[J]. Laser Technology, 2016, 40(5):695-701(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201605016.htm
[4] GUO H P, WAN Ch H, XU Ch W, et al. Study on dynamic mode stability of external cavity diode lasers. Laser Technology, 2016, 40(5):706-711(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201605018.htm
[5] BERND K, ANDREAS S. Multi-kW high brightness fiber coupled diode laser[J]. The International Society for Optical Engineering, 2013, 25(3):86050-86061. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0213868043/
[6] LADED D. Epileptic seizure prediction and control[J]. IEEE Transactions on Biomedical Engineering, 2013, 50(5):549-558. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0211600670/
[7] GAO X, OHASHI H, OKAMOTO H. Beam-shaping technique for improving the beam quality of a high-power laser-diode stack[J]. Optics Letters, 2016, 31(6):1654-1656. http://www.ncbi.nlm.nih.gov/pubmed/16688251
[8] DONG J X, LOU Q H, SU Zh P. Beam quality improvement of laser diode array by using off-axis external cavity[J]. Optics Express, 2015, 15(27):11776-11780. http://europepmc.org/abstract/MED/19547540
[9] CAO Ch G, WANG X, ZENG X D. The problem with beam quality for semiconductor laser[J]. International Journal for Light and Electron Optics, 2016, 127(16):3701-3702. http://www.sciencedirect.com/science/article/pii/S0030402616000954
[10] HAO Y, LIU Y, ANDREA B. Investigation of collimating and focusing lenes' impact on laser diode stack beam parameter product[J]. Applied Optics, 2015, 54(15):10240-10248. https://www.ncbi.nlm.nih.gov/pubmed/26836683