高级检索

用于光纤激光器光谱组束的外腔反馈研究

刘小溪, 王学锋, 阚宝玺, 王军龙, 朱占达, 郑也

刘小溪, 王学锋, 阚宝玺, 王军龙, 朱占达, 郑也. 用于光纤激光器光谱组束的外腔反馈研究[J]. 激光技术, 2018, 42(6): 835-839. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.020
引用本文: 刘小溪, 王学锋, 阚宝玺, 王军龙, 朱占达, 郑也. 用于光纤激光器光谱组束的外腔反馈研究[J]. 激光技术, 2018, 42(6): 835-839. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.020
LIU Xiaoxi, WANG Xuefeng, KAN Baoxi, WANG Junlong, ZHU Zhanda, ZHENG Ye. Research of external cavity feedback for spectral beam combining of fiber lasers[J]. LASER TECHNOLOGY, 2018, 42(6): 835-839. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.020
Citation: LIU Xiaoxi, WANG Xuefeng, KAN Baoxi, WANG Junlong, ZHU Zhanda, ZHENG Ye. Research of external cavity feedback for spectral beam combining of fiber lasers[J]. LASER TECHNOLOGY, 2018, 42(6): 835-839. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.020

用于光纤激光器光谱组束的外腔反馈研究

基金项目: 

国家重点研发计划资助项目 2017YFF0104500

详细信息
    作者简介:

    刘小溪(1990-), 男, 硕士研究生, 现主要从事光谱组束的研究

    通讯作者:

    王学锋, E-mail:xuefeng_wang@sina.cn

  • 中图分类号: TN248.1

Research of external cavity feedback for spectral beam combining of fiber lasers

  • 摘要: 为了解决光纤激光器外腔光谱组束中存在像差以及发光单元反馈不足等问题,采用将组束系统中单个传输透镜准直和聚焦功能分离的方法,搭建了光纤激光外腔反馈系统,实现了激光波长的锁定。结果表明,该系统光光转换效率为91.5%,反馈输出线宽为0.16nm,输出功率为29.7W,组束方向M2=1.241,非组束方向M2=1.171,实验结果同理论分析相符。该外腔反馈方案可以应用于光纤激光器光谱组束。
    Abstract: In order to solve the problems, such as aberration in spectrum beam combining (SBC) of external cavity of fiber lasers and insufficient feedback of light emitting units, separating the collimation and focusing function of a single transmission lens in a beam combining system instead of multiple lenses, an external cavity feedback system for an optical fiber laser was set up. Laser wavelength was locked. Through theoretical analysis and experimental verification, the result shows that, optical-optical efficiency is 91.5%, output line width of feedback is 0.16nm, output power is 29.7W, M2 in beam combining direction is 1.241, and M2 of non beam combining direction is 1.171. Experimental results are in agreement with theoretical analysis. The external cavity feedback scheme can be applied to spectrum beam combining of fiber lasers.
  • Figure  1.   Schematic layout of external cavity SBC

    Figure  2.   Schematic layout of external cavity SBC after improvement

    Figure  3.   Schematic layout of beams before & after grating

    Figure  4.   Simulation layout of external cavity feedback system in ZEMAX

    Figure  5.   Light field distribution

    a-output laser b-feedback laser

    Figure  6.   Simulation layout of SBC system in ZEMAX

    Figure  7.   Light field distribution

    a-external cavity feedback laser after grating b-SBC after grating c-external cavity feedback laser after partially reflecting flat mirror d-SBC after partially reflecting flat mirror

    Figure  8.   Schematic layout of external feedback system

    Figure  9.   Relationship of SBC output power, free drive laser power, combination efficiency and current

    Figure  10.   Qualitative measurement results of external cavity feedback of SBC

    Figure  11.   Spectrum of fiber laser and SBC system

    a-fiber laser on free drive b-SBC system

  • [1]

    LOU Q H, ZHOU J, WANG Zh J. Analysis of high-power fiber laser weapons[J]. Laser Technology, 2003, 27(3):161-165(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JGJS200303000.htm

    [2]

    BACHMAMM F, LOOSEN P, POPRAWE R. High power diode lasers techology and applications[M]. New York, USA:Springer, 2007:38-39, 215-217.

    [3]

    ZERVAS M N, CODEMARD C A. High power fiber lasers:a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5):0904123. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201801005

    [4]

    DAWSON J W, MESSERLY M J, BEACH R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17):13240. DOI: 10.1364/OE.16.013240

    [5]

    CIAPURIN I V, GLEBOV L B, GLEBOVA L N, et al. Incoherent combining of 100W Yb-fiber laser beams by PTR Bragg grating, advances in fiber devices[J]. Proceedings of the SPIE, 2003, 4974:209-219. DOI: 10.1117/12.501670

    [6]

    MADASAMY P, LOFTUS T, THOMAS P, et al. Comparison of spectral beam combining approaches for high power fiber laser systems[J]. Proceedings of the SPIE 2008, 6952:1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0210514508

    [7]

    LOFTUS T H, THOMAS A M, HOFFMAN P R, et al. Spectrally beam-combined fiber lasers for high-average-power applications[J]. IEEE Journal of Select Topics in Quantum Electronics, 2007, 13(3):487-497. DOI: 10.1109/JSTQE.2007.896568

    [8]

    AFZAL R S, HONEA E, SAVAGE-LUECHS M, et al. Spectrally beam combined fiber lasers for high power, efficiency and brightness[J]. Proceedings of the SPIE, 2012, 8547:1-4. DOI: 10.1117/12.982047

    [9]

    ZHANG D Y, HAO J P, ZHU Ch, et al. Review on spectral beam combining of fiber lasers[J]. Laser & Infrared, 2016, 46(5):517-518(in Chinese).

    [10]

    COOK C C, FAN T Y. Spectral beam combining of Yb-doped fiber lasers in an external cavity[J]. Advanced Solid-State Lasers, 1999, 26(10):163-166. http://www.opticsinfobase.org/abstract.cfm?uri=ASSL-1999-PD5

    [11]

    AUGUST S J, GOYAL A K, AGGARWAL R L, et al. Wavelength beam combining of ytterbium fiber lasers.[J]. Optics Letters, 2003, 28(5):331-332. DOI: 10.1364/OL.28.000331

    [12]

    RÖSER F, KLINGEBIEL S, LIEM A, et al. Spectral beam combining of fiber lasers[J]. Proceedings of the SPIE, 2006, 6102:61020T-1. DOI: 10.1117/12.659451

    [13]

    KLINGEBIEL S, RÖSER F, ORTAC B, et al. Spectral beam combining of Yb-doped fiber lasers with high efficiency[J].Journal of the Optical Society of America, 2007, 24(8):1716-1720. DOI: 10.1364/JOSAB.24.001716

    [14]

    THOMAS H L. High power spectrally beam combined fiber laser with near-diffraction limited beam quality[J].Proceedings of the SPIE, 2007, 6453:64530S-1. DOI: 10.1117/12.702574

    [15]

    WIRTH C, SCHMIDT O, TSYBIN I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2kW[J]. Optics Letters, 2011, 36(16):3118-3119. DOI: 10.1364/OL.36.003118

    [16]

    HONEA E, AFZAL R S, SAVAGE-LEUCHS M, et al. Advances in fiber laser spectral beam combinings for power scaling[J]. Proceedings of the SPIE, 2016, 9730:97300Y-1. DOI: 10.1117/12.2207613

    [17]

    MA Y, YAN H, TIAN F, et al. Common aperture spectral beam combination of fiber lasers with 5kW power high-efficiency and high-quality output.[J].High Power Laser and Particle Beams, 2015, 27(5):040101(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs201504001

    [18]

    MA Y, YAN H, PENG W J, et al. 9.6kW common aperture sprectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese Journal of Lasers, 2016, 43(9):0901009(in Chinese). DOI: 10.3788/CJL

    [19]

    ZHENG Y, YANG Y, WANG J, et al.10.8K spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11):12063-12071. DOI: 10.1364/OE.24.012063

    [20]

    LIU A, MEAD R, VATTER T, et al. Spectral beam combining of high power fiber lasers[J].Proceedings of the SPIE, 2004, 5335:83-84. http://d.old.wanfangdata.com.cn/Periodical/jgyhw201804013

  • 期刊类型引用(0)

    其他类型引用(2)

图(11)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  1
  • PDF下载量:  6
  • 被引次数: 2
出版历程
  • 收稿日期:  2017-11-19
  • 修回日期:  2017-12-07
  • 发布日期:  2018-11-24

目录

    /

    返回文章
    返回