高级检索

聚苯乙烯与钛激光透射连接工艺研究

李静, 刘会霞, 谭文胜, 孙跃东, 申祥, 王霄

李静, 刘会霞, 谭文胜, 孙跃东, 申祥, 王霄. 聚苯乙烯与钛激光透射连接工艺研究[J]. 激光技术, 2018, 42(6): 827-834. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.019
引用本文: 李静, 刘会霞, 谭文胜, 孙跃东, 申祥, 王霄. 聚苯乙烯与钛激光透射连接工艺研究[J]. 激光技术, 2018, 42(6): 827-834. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.019
LI Jing, LIU Huixia, TAN Wensheng, SUN Yuedong, SHEN Xiang, WANG Xiao. Process research of laser transmission connection of polystyrene and titanium[J]. LASER TECHNOLOGY, 2018, 42(6): 827-834. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.019
Citation: LI Jing, LIU Huixia, TAN Wensheng, SUN Yuedong, SHEN Xiang, WANG Xiao. Process research of laser transmission connection of polystyrene and titanium[J]. LASER TECHNOLOGY, 2018, 42(6): 827-834. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.019

聚苯乙烯与钛激光透射连接工艺研究

基金项目: 

常州市高技术研究重点实验室资助项目 CM20153001

国家自然科学基金资助项目 51275219

详细信息
    作者简介:

    李静(1992-), 女, 硕士研究生, 现主要从事激光加工和数字化设计与制造等方面的研究

    通讯作者:

    刘会霞, E-mail:lhx@ujs.edu.cn

  • 中图分类号: TG456.7

Process research of laser transmission connection of polystyrene and titanium

  • 摘要: 为了解决激光透射难以实现连接聚苯乙烯与钛的问题,采用氧等离子体处理后的聚苯乙烯与经激光表面处理的薄钛进行了激光透射连接。建立了激光透射连接工艺参量的数学模型,分析了工艺参量对连接强度的交互式影响,得到了优化工艺参量。结果表明,经过处理后的聚苯乙烯与薄钛再进行激光连接时,其连接强度从0.5MPa提高到6.0MPa以上,有效解决了聚苯乙烯与钛的激光透射连接难题;通过优化工艺参量可获得最优的工艺参量组合。该研究为此工艺的工业应用奠定了基础。
    Abstract: In order to solve the problem that laser transmission was difficult to connect polystyrene and titanium, polystyrene treated with oxygen plasma was used for laser transmission connection with thin titanium treated by laser surface treatment. Mathematical model of laser transmission connection process parameters was established, and interactive influence of process parameters on connection strength was analyzed. The optimized process parameters were obtained. The results show that the bonding strength of polystyrene and thin titanium after treatment increases from 0.5MPa to more than 6.0MPa. Laser transmission connection problem of polystyrene and titanium can effectively be solved. The combination of the optimum process parameters can be obtained by optimizing the process parameters. The research makes the foundation for industrial application of the process.
  • Figure  1.   Schematic of laser transmission bonding

    Figure  2.   Diagram of sample connection

    图  3   Pareto diagram of the response of welding parameters to welding strength

    Figure  4.   Relationship between the effect of process parameters and joint strength

    Figure  5.   Interactive effects of laser treatment power and surface scanning speed on welding strength

    a-contours plot b-response surface plot

    Figure  6.   Interactive effects of scanning speed and processing time on welding strength

    a-contours plot b-response surface plot

    Figure  7.   Interactive effects of laser bonding power and laser treatment power on welding strength

    a-contours plot b-response surface plot

    Figure  8.   Interactive effects of laser bonding power and scanning speed on welding strength

    a-contours plot b-response surface plot

    Figure  9.   Interactive effects of laser bonding speed and scanning speed on welding strength

    a-contours plot b-response surface plot

    Figure  10.   Comparison of the predicted result and the actual experimental results

    Table  1   Primary process parameters and their ranges

    design
    variables
    variable
    code
    initial
    value
    minimum maximum
    laser bonding power/W T1 5 4 6
    laser bonding speed/(mm·s-1) T2 2 1 3
    focal shift/mm T3 0 -1 1
    laser sweep power/W T4 5 4 6
    scanning speed/(mm·s-1) T5 2 1 3
    scanning frequency n T6 6 4 8
    processing time/s T7 120 90 150
    下载: 导出CSV

    Table  2   Process parameters and their limits

    parameters limits
    -1 0 +1
    laser bonding power/W 4 5 6
    laser bonding speed/(mm·s-1) 1 2 3
    laser sweep power/W 4 5 6
    scanning speed/(mm·s-1) 1 2 3
    processing time/s 90 120 150
    下载: 导出CSV

    Table  3   Table of variance analysis for joint width model

    source sum of squares degree freedom mean square F value probability>f
    model 213.46 20 10.67 115.19 <0.0001 significant
    A 0.022 1 0.022 0.23 0.6316
    B 0.19 1 0.19 2.05 0.1631
    C 0.058 1 0.058 0.62 0.436
    D 5.77×10-4 1 5.77×10-4 6.22×10-3 0.9377
    E 9.86×10-3 1 9.86×10-3 0.11 0.7466
    AB 0.038 1 0.038 0.41 0.528
    AC 1.51×10-3 1 1.51×10-3 0.016 0.8992
    AD 8.00×10-4 1 8.00×10-4 8.63×10-3 0.9266
    AE 0.02 1 0.02 0.22 0.6457
    BC 0.014 1 0.014 0.15 0.7043
    BD 1.80×10-3 1 1.80×10-3 0.019 0.8901
    BE 3.20×10-3 1 3.20×10-3 0.035 0.8539
    CD 5.00×10-3 1 5.00×10-3 5.40×10-4 0.9816
    CE 3.20×10-3 1 3.20×10-3 0.035 0.8539
    DE 4.51×10-3 1 4.51×10-3 0.049 0.8269
    A2 6.15 1 6.15 66.37 <0.0001
    B2 0.31 1 0.31 3.4 0.0755
    C2 2.55 1 2.55 27.55 <0.0001
    D2 0.41 1 0.41 4.42 0.0444
    E2 4.90 1 4.9 52.87 <0.0001
    residual 2.69 29 0.093
    lack of fit 2.40 22 0.11 2.71 0.0895 not significant
    pure error 0.28 7 0.04
    corrected toal 216.15 49
    stand deviation:0.3 R2=0.9876
    mean:3.01 adjusted R2=0.979
    coefficient of variation:10.11 predicted R2=0.969
    predicted residual of sum of squares:6.7 adequate precision:25.094
    下载: 导出CSV

    Table  4   Verification of mathematical model

    A/W B/
    (mm·s-1)
    C/W D/
    (mm·s-1)
    E/s strength/MPa
    actual predicted error
    4.5 1 5 2 90 3.08 3.25 5.5%
    5 2 5.5 1 120 4.46 4.68 4.9%
    5.5 3 6 3 150 3.78 3.98 5.2%
    下载: 导出CSV
  • [1]

    WANG Q, JIAO J K, WANG F Y, et al. Finite element analysis of CFRP and stainless steel laser welding[J].Laser Technology, 2016, 40(6):853-859(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201606017

    [2]

    WANG X, LI P, XU Z, et al. Laser transmission joint between PET and titanium for biomedical application[J]. Journal of Materials Processing Technology, 2010, 210(13):1767-1771. DOI: 10.1016/j.jmatprotec.2010.06.007

    [3]

    LIU W, MENG D D, FAN C L, et al. Research of optical properties of nylon 66 in laser transmission welding[J]. Laser Technology, 2016, 40(5):716-721(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201605020

    [4]

    AHSAN M, TASLEMA S, GREG A, et al. Bonding mechanisms of laser-fabricated titanium/polyimide and titanium coated glass/polyi-mide microjoints[J]. Surface & Interface Analysis, 2010, 39(6):506-511. DOI: 10.1002/sia.2547/pdf

    [5]

    WANG X, SONG X, JIANG M, et al. Modeling and optimization of laser transmission joining process between PET and 316L stainless steel using response surface methodology[J]. Optics & Laser Technology, 2012, 44(3):656-663. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4325012f5c0c7b40cd3bd39de5275c86

    [6]

    GEORGIEV G L, BAIRD R J, MCCULLEN E F, et al. Chemical bond formation during laser bonding of Teflon® FEP.FEP and tita-nium[J]. Applied Surface Science, 2009, 255(15):7078-7083. DOI: 10.1016/j.apsusc.2009.03.046

    [7]

    LI P, LIU H X, XU Zh K, et al. Laser transmission joining process of PET films and titanium[J]. Chinese Journal of Lasers, 2010, 37(7):1914-1920(in Chinese). DOI: 10.3788/CJL

    [8]

    WANG X, LI P, LIU H X, et al. Temperature field simulation on laser transmission Joining PET films and titanium[J].Chinese Journal of Lasers, 2010, 37(5):1391-1397(in Chinese). DOI: 10.3788/CJL

    [9]

    ROESNER A, SCHEIK S, OLOWINSKY A, et al. Laser assisted joining of plastic metal hybrids[J]. Physics Procedia, 2011, 12(1):370-377. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000004009794

    [10]

    BERGMANN J P, STAMBKE M. Potential of laser-manufactured polymer-metal hybrid Joints[J]. Physics Procedia, 2012, 39(9):84-91. http://www.sciencedirect.com/science/article/pii/S1875389212025448

    [11]

    YUSOF F, YUKIO M, YOSHIHARU M, et al. Effect of anodizing on pulsed Nd:YAG laser joining of polyethylene terephthalate (PET) and aluminium alloy (A5052)[J]. Materials & Design, 2012, 37:410-415. http://www.sciencedirect.com/science/article/pii/S0261306912000155

    [12]

    ARAI S, KAWAHITO Y, KATAYAMA S. Effect of surface modification on laser direct joining of cyclic olefin polymer and stainless steel[J]. Materials & Design, 2014, 59(7):448-453. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f8e17eaa7e7da0d95d8db4db5802122

    [13]

    ZHANG K, LUO G X, CHEN G N. Study of laser oxidizing for titanium hardening[J].Heat Treatment of Metals, 2005, 30(3):8-10(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsrcl200503003

    [14]

    MESCHEDER U M, ALAVI M, HILTMANN K, et al. Local laser bonding for low temperature budget[J]. Sensors & Actuators Physical, 2002, 97/98(1):422-427. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=28524428028050b016e8f8011f1553a8

    [15]

    ZHANG R F, YU Y L, LIU X Sh, et al. Study on plasma treated polystyrene surface structure by XPS[J]. Macro-molecule Journal, 1990, 1(2):1-10(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9a0718bb086e784b45a55ce509c3472a

    [16]

    LIU X. Study on process and performance of glass to stainless steel/titanium alloy with laser welding[D]. Suzhou: Soochow University, 2015: 15(in Chinese).

    [17]

    TAN X H, SHAN J G, REN J L. Effects of Cr plating layer on shear strength and interface bonding characteristics of mild steel/CFRP joint by laser heating[J]. Acta Metallurgica Sinica, 2013, 49(6):751-756. DOI: 10.3724/SP.J.1037.2013.00045

    [18]

    MONTGOMERY D C. Design and analysis of experiments[M].6th ed. Beijing:People's Post and Telecommunications Press, 2009:51-52(in Chinese).

    [19]

    BENYOUNIS K Y, OLABI A G, HASHMI M S J. Effect of laser welding parameters on the heat input and weld-bead profile[J]. Journal of Materials Processing Technology, 2005, 164/165(10):978-985. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=72ab8c8d553183f6f32c2370d05155f8

    [20]

    YANG Ch, WANG L, PENG X W. Surface oxygen diffusion hardening technology of titanium and titanium alloy[J]. Modern Machinery, 2013(2):74-75(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDJX201302021.htm

    [21]

    LIU B G, WANG X, LIU W, et al. Process optimization of laser transmission spot welding using material pmma for automotive industry[J]. Chinese Journal of Lasers, 2016, 43(5):503004(in Chinese). DOI: 10.3788/CJL

  • 期刊类型引用(3)

    1. 李鹏. 光纤传感器电路中的关键技术分析. 激光杂志. 2018(04): 62-64 . 百度学术
    2. 贾世甄, 朱益清, 姚晓天. 基于双光束光源的保偏光纤定轴方法研究. 激光技术. 2018(06): 785-789 . 本站查看
    3. 何丹丹, 赵换丽. 光纤传感信号的增益均衡处理. 激光杂志. 2017(06): 97-99 . 百度学术

    其他类型引用(0)

图(10)  /  表(4)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  1
  • PDF下载量:  5
  • 被引次数: 3
出版历程
  • 收稿日期:  2017-12-18
  • 修回日期:  2018-01-16
  • 发布日期:  2018-11-24

目录

    /

    返回文章
    返回