Process research of laser transmission connection of polystyrene and titanium
-
摘要: 为了解决激光透射难以实现连接聚苯乙烯与钛的问题,采用氧等离子体处理后的聚苯乙烯与经激光表面处理的薄钛进行了激光透射连接。建立了激光透射连接工艺参量的数学模型,分析了工艺参量对连接强度的交互式影响,得到了优化工艺参量。结果表明,经过处理后的聚苯乙烯与薄钛再进行激光连接时,其连接强度从0.5MPa提高到6.0MPa以上,有效解决了聚苯乙烯与钛的激光透射连接难题;通过优化工艺参量可获得最优的工艺参量组合。该研究为此工艺的工业应用奠定了基础。Abstract: In order to solve the problem that laser transmission was difficult to connect polystyrene and titanium, polystyrene treated with oxygen plasma was used for laser transmission connection with thin titanium treated by laser surface treatment. Mathematical model of laser transmission connection process parameters was established, and interactive influence of process parameters on connection strength was analyzed. The optimized process parameters were obtained. The results show that the bonding strength of polystyrene and thin titanium after treatment increases from 0.5MPa to more than 6.0MPa. Laser transmission connection problem of polystyrene and titanium can effectively be solved. The combination of the optimum process parameters can be obtained by optimizing the process parameters. The research makes the foundation for industrial application of the process.
-
-
Table 1 Primary process parameters and their ranges
design
variablesvariable
codeinitial
valueminimum maximum laser bonding power/W T1 5 4 6 laser bonding speed/(mm·s-1) T2 2 1 3 focal shift/mm T3 0 -1 1 laser sweep power/W T4 5 4 6 scanning speed/(mm·s-1) T5 2 1 3 scanning frequency n T6 6 4 8 processing time/s T7 120 90 150 Table 2 Process parameters and their limits
parameters limits -1 0 +1 laser bonding power/W 4 5 6 laser bonding speed/(mm·s-1) 1 2 3 laser sweep power/W 4 5 6 scanning speed/(mm·s-1) 1 2 3 processing time/s 90 120 150 Table 3 Table of variance analysis for joint width model
source sum of squares degree freedom mean square F value probability>f model 213.46 20 10.67 115.19 <0.0001 significant A 0.022 1 0.022 0.23 0.6316 B 0.19 1 0.19 2.05 0.1631 C 0.058 1 0.058 0.62 0.436 D 5.77×10-4 1 5.77×10-4 6.22×10-3 0.9377 E 9.86×10-3 1 9.86×10-3 0.11 0.7466 AB 0.038 1 0.038 0.41 0.528 AC 1.51×10-3 1 1.51×10-3 0.016 0.8992 AD 8.00×10-4 1 8.00×10-4 8.63×10-3 0.9266 AE 0.02 1 0.02 0.22 0.6457 BC 0.014 1 0.014 0.15 0.7043 BD 1.80×10-3 1 1.80×10-3 0.019 0.8901 BE 3.20×10-3 1 3.20×10-3 0.035 0.8539 CD 5.00×10-3 1 5.00×10-3 5.40×10-4 0.9816 CE 3.20×10-3 1 3.20×10-3 0.035 0.8539 DE 4.51×10-3 1 4.51×10-3 0.049 0.8269 A2 6.15 1 6.15 66.37 <0.0001 B2 0.31 1 0.31 3.4 0.0755 C2 2.55 1 2.55 27.55 <0.0001 D2 0.41 1 0.41 4.42 0.0444 E2 4.90 1 4.9 52.87 <0.0001 residual 2.69 29 0.093 lack of fit 2.40 22 0.11 2.71 0.0895 not significant pure error 0.28 7 0.04 corrected toal 216.15 49 stand deviation:0.3 R2=0.9876 mean:3.01 adjusted R2=0.979 coefficient of variation:10.11 predicted R2=0.969 predicted residual of sum of squares:6.7 adequate precision:25.094 Table 4 Verification of mathematical model
A/W B/
(mm·s-1)C/W D/
(mm·s-1)E/s strength/MPa actual predicted error 4.5 1 5 2 90 3.08 3.25 5.5% 5 2 5.5 1 120 4.46 4.68 4.9% 5.5 3 6 3 150 3.78 3.98 5.2% -
[1] WANG Q, JIAO J K, WANG F Y, et al. Finite element analysis of CFRP and stainless steel laser welding[J].Laser Technology, 2016, 40(6):853-859(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201606017
[2] WANG X, LI P, XU Z, et al. Laser transmission joint between PET and titanium for biomedical application[J]. Journal of Materials Processing Technology, 2010, 210(13):1767-1771. DOI: 10.1016/j.jmatprotec.2010.06.007
[3] LIU W, MENG D D, FAN C L, et al. Research of optical properties of nylon 66 in laser transmission welding[J]. Laser Technology, 2016, 40(5):716-721(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201605020
[4] AHSAN M, TASLEMA S, GREG A, et al. Bonding mechanisms of laser-fabricated titanium/polyimide and titanium coated glass/polyi-mide microjoints[J]. Surface & Interface Analysis, 2010, 39(6):506-511. DOI: 10.1002/sia.2547/pdf
[5] WANG X, SONG X, JIANG M, et al. Modeling and optimization of laser transmission joining process between PET and 316L stainless steel using response surface methodology[J]. Optics & Laser Technology, 2012, 44(3):656-663. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4325012f5c0c7b40cd3bd39de5275c86
[6] GEORGIEV G L, BAIRD R J, MCCULLEN E F, et al. Chemical bond formation during laser bonding of Teflon® FEP.FEP and tita-nium[J]. Applied Surface Science, 2009, 255(15):7078-7083. DOI: 10.1016/j.apsusc.2009.03.046
[7] LI P, LIU H X, XU Zh K, et al. Laser transmission joining process of PET films and titanium[J]. Chinese Journal of Lasers, 2010, 37(7):1914-1920(in Chinese). DOI: 10.3788/CJL
[8] WANG X, LI P, LIU H X, et al. Temperature field simulation on laser transmission Joining PET films and titanium[J].Chinese Journal of Lasers, 2010, 37(5):1391-1397(in Chinese). DOI: 10.3788/CJL
[9] ROESNER A, SCHEIK S, OLOWINSKY A, et al. Laser assisted joining of plastic metal hybrids[J]. Physics Procedia, 2011, 12(1):370-377. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000004009794
[10] BERGMANN J P, STAMBKE M. Potential of laser-manufactured polymer-metal hybrid Joints[J]. Physics Procedia, 2012, 39(9):84-91. http://www.sciencedirect.com/science/article/pii/S1875389212025448
[11] YUSOF F, YUKIO M, YOSHIHARU M, et al. Effect of anodizing on pulsed Nd:YAG laser joining of polyethylene terephthalate (PET) and aluminium alloy (A5052)[J]. Materials & Design, 2012, 37:410-415. http://www.sciencedirect.com/science/article/pii/S0261306912000155
[12] ARAI S, KAWAHITO Y, KATAYAMA S. Effect of surface modification on laser direct joining of cyclic olefin polymer and stainless steel[J]. Materials & Design, 2014, 59(7):448-453. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f8e17eaa7e7da0d95d8db4db5802122
[13] ZHANG K, LUO G X, CHEN G N. Study of laser oxidizing for titanium hardening[J].Heat Treatment of Metals, 2005, 30(3):8-10(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsrcl200503003
[14] MESCHEDER U M, ALAVI M, HILTMANN K, et al. Local laser bonding for low temperature budget[J]. Sensors & Actuators Physical, 2002, 97/98(1):422-427. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=28524428028050b016e8f8011f1553a8
[15] ZHANG R F, YU Y L, LIU X Sh, et al. Study on plasma treated polystyrene surface structure by XPS[J]. Macro-molecule Journal, 1990, 1(2):1-10(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9a0718bb086e784b45a55ce509c3472a
[16] LIU X. Study on process and performance of glass to stainless steel/titanium alloy with laser welding[D]. Suzhou: Soochow University, 2015: 15(in Chinese).
[17] TAN X H, SHAN J G, REN J L. Effects of Cr plating layer on shear strength and interface bonding characteristics of mild steel/CFRP joint by laser heating[J]. Acta Metallurgica Sinica, 2013, 49(6):751-756. DOI: 10.3724/SP.J.1037.2013.00045
[18] MONTGOMERY D C. Design and analysis of experiments[M].6th ed. Beijing:People's Post and Telecommunications Press, 2009:51-52(in Chinese).
[19] BENYOUNIS K Y, OLABI A G, HASHMI M S J. Effect of laser welding parameters on the heat input and weld-bead profile[J]. Journal of Materials Processing Technology, 2005, 164/165(10):978-985. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=72ab8c8d553183f6f32c2370d05155f8
[20] YANG Ch, WANG L, PENG X W. Surface oxygen diffusion hardening technology of titanium and titanium alloy[J]. Modern Machinery, 2013(2):74-75(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDJX201302021.htm
[21] LIU B G, WANG X, LIU W, et al. Process optimization of laser transmission spot welding using material pmma for automotive industry[J]. Chinese Journal of Lasers, 2016, 43(5):503004(in Chinese). DOI: 10.3788/CJL
-
期刊类型引用(3)
1. 李鹏. 光纤传感器电路中的关键技术分析. 激光杂志. 2018(04): 62-64 . 百度学术
2. 贾世甄, 朱益清, 姚晓天. 基于双光束光源的保偏光纤定轴方法研究. 激光技术. 2018(06): 785-789 . 本站查看
3. 何丹丹, 赵换丽. 光纤传感信号的增益均衡处理. 激光杂志. 2017(06): 97-99 . 百度学术
其他类型引用(0)