高级检索

一种波束扫描固态等离子体超表面的设计

李文煜, 章海锋, 刘婷, 马宇

李文煜, 章海锋, 刘婷, 马宇. 一种波束扫描固态等离子体超表面的设计[J]. 激光技术, 2018, 42(6): 822-826. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.018
引用本文: 李文煜, 章海锋, 刘婷, 马宇. 一种波束扫描固态等离子体超表面的设计[J]. 激光技术, 2018, 42(6): 822-826. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.018
LI Wenyu, ZHANG Haifeng, LIU Ting, MA Yu. Design of the metasurface based on solid-state plasma for beam scanning[J]. LASER TECHNOLOGY, 2018, 42(6): 822-826. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.018
Citation: LI Wenyu, ZHANG Haifeng, LIU Ting, MA Yu. Design of the metasurface based on solid-state plasma for beam scanning[J]. LASER TECHNOLOGY, 2018, 42(6): 822-826. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.018

一种波束扫描固态等离子体超表面的设计

基金项目: 

南京邮电大学引进人才科研启动基金(高水平师资)资助项目 NY217131

南京邮电大学校级大学生创新训练计划支持项目 

中国博士后特优资助项目 2016T90455

中国博士后面上资助项目 2015M581790

江苏省博士后面上资助项目 1501016A

详细信息
    作者简介:

    李文煜(1997-), 男, 大学本科生, 现主要从事周期性介质结构电磁特性的研究

    通讯作者:

    章海锋, E-mail:hanlor@163.com

  • 中图分类号: O436;O53

Design of the metasurface based on solid-state plasma for beam scanning

  • 摘要: 为了实现空间中波束的动态扫描,设计了一款基于固态等离子体的超表面。采用阵列单元相位曲线拼接的技术,通过拼接介质基板厚度不同的阵列单元的相位曲线来实现0°~360°的相位补偿,并用数值插值的方式建立超表面参变量与相位补偿角之间的映射。结果表明,超表面的反射主波束方向θ分别为15°,25°和30°,计算结果与设计相符合,通过改变固态等离子体的激励区域来重构阵列单元,实现了空间中波束在θ为15°,25°和30°时的动态扫描。此反射型超表面阵列单元的普适性设计方法,降低了阵列单元的设计难度,并通过固态等离子体的可调谐特性实现了空间波束扫描超表面的设计。
    Abstract: In order to realize dynamic scanning of beam in space, matasurface based solid plasma was designed. Phase compensation of 0°~360° was realized by splicing phase curve of array element of dielectric substrate with different thickness. The mapping between matasurface parameter and phase compensation angle was established by numerical interpolation. The results show that the reflecting main beam direction of the metasurface is θ=15°, θ=25° and θ=30° respectively. The calculated results are in agreement with the designed results. Array elements are reconstructed by changing the excitation region of solid plasma, and dynamic scanning of the beam in the space is achieved in the space of θ=15°, θ=25° and θ=30°. The universal design method of reflective matasurface array unit reduces the design difficulty of array unit, and realizes the design of space beam scanning matasurface by the tunable characteristic of solid plasma.
  • Figure  1.   Structure schematic of unit cell for the proposed metasurface

    a—the structure of unit cell A b—the structure of unit cell B

    Figure  2.   Overlook and side views of unit cell for the proposed metasurface

    Figure  3.   Relationship between reflection phase and parameter a

    a—the structure of unit cell A b—the structure of unit cell B

    Figure  4.   Relationships between reflection phase and parameters

    a—h=3mm b—h=1.6mm

    Figure  5.   Relationship between the location of 900 structural elements of metasurface and parameter a with different main beam direction angles θ of the reflected electromagnetic wave

    a—θ=15° b—θ=25° c—θ=30°

    Figure  6.   Radiation patterns of rmetasurface with reflective beam for different θ

    a—θ=15° b—θ=25° c—θ=30°

  • [1]

    HUANG L L, CHEN X Zh, MUEHLENBERND H, et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 2012, 12(11):5750-5755. DOI: 10.1021/nl303031j

    [2]

    HE J W, WANG X K, HU D, et al. Generation and evolution of the terahertz vortex beam[J]. Optics Express, 2013, 21(17):20230-20239. DOI: 10.1364/OE.21.020230

    [3]

    LI Y, MO W Ch, YANG Zh G, et al. Generation of terahertz vortex beams base on metasurface antenna array[J].Laser Technology, 2017, 41(5):644-648(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201705005

    [4]

    JIANG X X, WANG J M, HUANG X, et al. Complex amplitude pupil filters based on metasurface with subwavelength slot antenna[J]. Laser Technology, 2017, 41(6):807-811(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201706008

    [5]

    TAN L R, WU R X, WANG C Y, et al. Magnetically tunable ferrite loaded SIW antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12(3):273-275. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228674684/

    [6]

    WANG Y, LIU Y, DU H, et al. A frequency reconfigurable micro-strip antenna based on (Ba, Sr)TiO3 substrate[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(2):770-775. DOI: 10.1109/TAP.2014.2378275

    [7]

    WU Sh, ZHANG Zh, ZHANG Y, et al. Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes[J]. Physical Review Letters, 2013, 110(20):207401. DOI: 10.1103/PhysRevLett.110.207401

    [8]

    MA X L, HUANG Ch, PU M B, et al. Multi-band circular polarizer using planar spiral metamaterial structure[J]. Optics Express, 2012, 20(14):16050-16058. DOI: 10.1364/OE.20.016050

    [9]

    GRADY N, HEYES J, CHOWDHURY D, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138):1304-1307. DOI: 10.1126/science.1235399

    [10]

    CHIN J, GOLLUB J, MOCK J, et al. An efficient broadband metamaterial wave retarder[J]. Optics Express, 2009, 17(9):7640-7647. DOI: 10.1364/OE.17.007640

    [11]

    HAN J F, CAO X Y, GAO J, et al. Design of broadband reflective 90° polarization rotator based on metamaterial[J]. Acta Physica Si-nica, 2016, 65(4):044201(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201604011

    [12]

    AIETA F, GENEVET P, KATS M A, et al. Aberration free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9):4932-4936. DOI: 10.1021/nl302516v

    [13]

    YU N, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science, 2011, 334(6054):333-337. DOI: 10.1126/science.1210713

    [14]

    GERMAIN D, SEETHARAMDOO D, BUROKUR S N, et al. Phase-compensated metasurface for a conformal microwave antenna[J]. Applied Physics Letters, 2013, 103(12):124102. DOI: 10.1063/1.4821357

    [15]

    WONJPS G, SELVANAYAGAM M, ELEFTHERIADES G V. Design of unit cells and demonstration of methods for synthesizing Huygens metasurfaces[J]. Photonics and Nanostructures-Fundamentals and Applications, 2014, 12(4):360-375. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0d473d31877d37d39666771f8f7a50f6

    [16]

    ZHU B O, ZHAO J, FENG Y. Active impedance metasurface with full 360 reflection phase tuning[J]. Scientific Reports, 2013, 3(3):3059. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3808812

    [17]

    SUN S, YANG K Y, WANG C M, et al. High-efficiency broadband anomalous reflection by gradient metasur-faces[J]. Nano Letters, 2012, 12(12):6223-6229. DOI: 10.1021/nl3032668

    [18]

    WEI Z Y, CAN Y, SU X P, et al. Highly efficient beam steering with a transparent metasurface[J].Optics Express, 2013, 21(9):10739-10745. DOI: 10.1364/OE.21.010739

    [19]

    ZHANG L W, GONG R K, WANG X L, et al. Influence of particle size on plasma characters of laser-induced pulverized coal flow[J].Laser Technology, 2017, 41(3):438-441(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201703026

    [20]

    LI K, XIN J T, XIA J B, et al. Research of rapid annealing of fiber Bragg gratings based on arc plasma[J].Laser Technology, 2017, 41(5):649-653(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201705006

    [21]

    QI M Q, TANG W X, MA H F, et al. Suppressing side-lobe radiations of horn antenna by loading metamaterial lens[J]. Scientific Reports, 2015, 5:9113. DOI: 10.1038/srep09113

    [22]

    WEE F H, MALEK F, ALAMANI A U, et al. Effect of two diffe-rent superstrate layers on Bismuth Titanate (BiT) array antennas[J]. Scientific Reports, 2014, 4:3709. http://www.nature.com/srep/2014/140115/srep03709/full/srep03709.html

    [23]

    RUI G H, ZHAN Q W. Highly sensitive beam steering with plasmonic antenna[J]. Scientific Reports, 2014, 4:5962. http://www.ncbi.nlm.nih.gov/pubmed/25091405

    [24]

    ZHU H L, LIU X H, CHEUNG S W, et al. Frequency-reconfigurable antenna using metasurface[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1):80-85. DOI: 10.1109/TAP.2013.2288112

    [25]

    SUN W J, HE Q, HAO J M, et al. A transparent metamaterial to manipulate electromagnetic wave polarizations[J]. Optics Letters, 2011, 36(6):927-929. DOI: 10.1364/OL.36.000927

    [26]

    JOSÉ A. Encinar, design of two-layer printed reflect arrays using patches of variable size[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(10):1403-1410. DOI: 10.1109/8.954929

图(6)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  1
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-19
  • 修回日期:  2018-01-15
  • 发布日期:  2018-11-24

目录

    /

    返回文章
    返回