Numerical study on coated metal surface crack by laser ultrasonic detection
-
摘要: 为了研究线源脉冲激光激发的超声波在带涂层金属板表面裂纹检测方面的应用,采用有限元模拟的方法,分别建立了含有裂纹的带镍涂层和不带镍涂层金属板模型,并模拟出激光激发出的瑞利波以及瑞利波的传播过程。通过对接收点处的波形进行理论分析,得出了涂层厚度、裂纹深度与瑞利波时频域信号的关系。结果表明,瑞利波波速随着涂层厚度h的不同而不断变化;当表面存在裂纹时,不带涂层模型的反射瑞利波与剪切瑞利波的到达时间差Δt与裂纹深度hc成线性关系,带涂层模型的Δt与hc以涂层厚度为分界点成分段线性关系。此研究结果为实际测量带涂层金属板的表面裂纹深度提供了参考。Abstract: In order to study the application of ultrasonic wave induced by line-source pulse laser on surface crack detection of the coated metal plate, finite element simulation method was used to establish the model of metal plate with cracks with and without nickel coating. Rayleigh wave excited by laser and the propagation process of Rayleigh wave were simulated. Through theoretical analysis of waveform at the receiving point, the relationship of coating thickness, crack depth and Rayleigh wave time-frequency domain signal was obtained. The numerical results show that Rayleigh wave velocity varies with the thickness of coating thickness h. When there are cracks on the surface, the arriving time difference Δt between reflection Rayleigh wave and shear Rayleigh wave of the model without coating has linear relationship with crack depth hc. Δt of the model with coating has linear relationship with crack depth hc at different segmentations. The numerical results provide reference for actual measurement of the surface crack depth of metal sheets with coating.
-
Keywords:
- measurement and metrology /
- laser ultrasonic /
- Rayleigh wave /
- rack detection /
- nickel coating
-
-
表 1 Arrival time of Rayleigh wave at different receiving points and coating thickness h
coating
thickness h/μm0 50 100 150 200 250 300 350 400 450 500 550 D/μs 0.652 0.716 0.776 0.800 0.796 0.788 0.776 0.772 0.752 0.746 0.736 0.728 C/μs 1.344 1.444 1.588 1.636 1.636 1.620 1.608 1.588 1.572 1.548 1.532 1.524 -
[1] MA J, ZHAO Y, ZHOU F Y. Effect of defocusing amount on thickness measurement based on laser ultrasound[J]. Laser Technology, 2015, 39(3):349-352(in Chinese). http://www.opticsjournal.net/abstract.htm?aid=OJ150428000149u1x4A7
[2] LIU P P, NAZIRAH A W, SOHN H. Numerical simulation of damage detection using laser-generated ultrasound[J]. Ultrasonics, 2016, 69:248-258. DOI: 10.1016/j.ultras.2016.03.013
[3] ZHAN Y, LIU Ch Sh, ZHANG F P, et al. Experimental study and finite element analysis based on equivalent load method for laser ultrasonic measurement of elastic constants[J]. Ultrasonics, 2016, 69:243-247. DOI: 10.1016/j.ultras.2016.03.014
[4] GUAN J F. Numerical analysis of inspection of micro-surface crack by laser generated surface acoustic waves[J]. Chinese Journal of Quantum Electronics, 2011, 28(3):362-368(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LDXU201103021.htm
[5] SONG Y X, WANG J. The influence of laser parameters and laser ultrasonic detection methods on ultrasonic signals[J]. Infrared and Laser Engineering, 2014, 43(5):1433-1437(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CFKO199311920765245
[6] ZENG W, WANG H T, TIAN G Y, et al. Study on the oscillation effects of laser-induced SAW and near-surface defects[J]. Chinese Journal of Physics, 2015, 64(13):134302(in Chinese).
[7] GUO H L, ZHENG B, LIU H. Numerical simulation and experimental research on interaction of micro-defects and laser ultrasonic signal[J]. Optics and Laser Technology, 2017, 96:58-64. DOI: 10.1016/j.optlastec.2017.04.004
[8] XU B Q, SHEN Z H, LU J. Numerical simulation of laser-induced transient temperature field in film-substrate system by finite element method[J]. International Journal of Heat and Mass Transfer, 2003, 46(25):4963-4968. DOI: 10.1016/S0017-9310(03)00345-4
[9] WANG M Y, ZHOU Y J, GUO Ch. Numerical simulation of laser ultrasonic detection of surface micro-crack depth[J]. Laser Technology, 2017, 41(2):178-181(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201702006.htm
[10] LIU H, ZHEN B, WANG Zh B, et al.Time dependence of laser Rayleigh wave on detecting surface defect depth[J]. Laser & Infrared, 2017, 47(6):669-673(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGHW201706005.htm
[11] MA J, ZHAO Y, GUO R, et al. Numerical simulation of temperature rise of material surface irradiated by the laser[J]. Laser Technology, 2013, 37(4):455-459(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201304010.htm
[12] XU B Q, SHEN Zh H, NI X W, et al. Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system[J]. Optics and Laser Technology, 2006, 38(3):138-145. DOI: 10.1016/j.optlastec.2004.12.002
[13] WANG J J, SHEN Zh H, NI X W, et al. Numerical simulation of laser-generated surface acoustic waves in the transparent coating on a substrate by the finite element method[J]. Optics and Laser Technology, 2007, 39(1):21-28. DOI: 10.1016/j.optlastec.2005.05.015
[14] SHEN Zh H, YUAN L, ZHANG H Ch, et al. Laser ultrasound in solids[M]. Beijing:Post & Telecom Press, 2015:57-68(in Chinese).
[15] XU B Q, SHEN Zh H, NI X W, et al. Time-frequency analysis of laser-generated ultrasonic wave in coating-substrate systems[J]. Laser Technology, 2004, 28(6):609-612(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS200406013.htm
-
期刊类型引用(3)
1. 龚皓, 干彬. 基于大数据分析技术的激光三维图像重构研究. 激光杂志. 2019(06): 83-87 . 百度学术
2. 韩媞. 低对比度全景球面图像目标分割方法. 科学技术与工程. 2017(14): 234-238 . 百度学术
3. 王淑青, 朱道利, 潘健, 李叶伟, 刘天俊, 李维, 要若天. 一种改进的Otsu红外林火图像提取方法研究. 激光杂志. 2016(10): 99-101 . 百度学术
其他类型引用(4)