高级检索

金属箔材无模激光多点冲击成形工艺研究

张凯, 叶云霞, 赵雳, 饶宵

张凯, 叶云霞, 赵雳, 饶宵. 金属箔材无模激光多点冲击成形工艺研究[J]. 激光技术, 2018, 42(6): 758-763. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.006
引用本文: 张凯, 叶云霞, 赵雳, 饶宵. 金属箔材无模激光多点冲击成形工艺研究[J]. 激光技术, 2018, 42(6): 758-763. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.006
ZHANG Kai, YE Yunxia, ZHAO Li, RAO Xiao. Study on die-less multi-point laser shock forming of metal foils[J]. LASER TECHNOLOGY, 2018, 42(6): 758-763. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.006
Citation: ZHANG Kai, YE Yunxia, ZHAO Li, RAO Xiao. Study on die-less multi-point laser shock forming of metal foils[J]. LASER TECHNOLOGY, 2018, 42(6): 758-763. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.006

金属箔材无模激光多点冲击成形工艺研究

基金项目: 

江苏省自然科学基金资助项目 BK20171297

江苏省六大人才高峰资助项目 GD2B-020

详细信息
    作者简介:

    张凯(1993-), 男, 硕士研究生, 主要从事激光加工方面的研究

    通讯作者:

    叶云霞, E-mail:yeyunxia@ujs.edu.cn

  • 中图分类号: TG665

Study on die-less multi-point laser shock forming of metal foils

  • 摘要: 为了解决金属箔材微拉深工艺中高昂的微型模具设计制造成本问题,采用无模具激光冲击微成形方法,对脉宽5ns、直径50μm的高重复频率激光光斑微冲击成形20μm厚T2铜箔进行了理论分析和实验验证。结果表明,在约束层没有破损的情况下,凹坑深度h、凹坑底平面直径L1和凹坑壁倾斜程度(L-L1)随着单脉冲能量E及光斑搭接率增加线性增大;激光扫描内外圆周顺序对凹坑深度没有影响,但会对凹坑底平面直径有影响,先扫描外圆周时会形成更大的凹坑底平面直径,无需模具,凹坑形貌是可控的。这一结果对激光无模微拉深渐进成形的进一步研究是有帮助的。
    Abstract: In order to solve the problem of high cost of micro mold design and manufacturing in metal foil micro deep drawing process, a die-less laser shock micro-forming method was used. A high repetition frequency laser with pulse width of 5ns and spot diameter of 50μm was shocked on the T2 copper foil with thickness of 20μm, and theoretical analysis and experimental verification were carried out. The results show that, when the confinement layer is not damaged, the pit depth h, the diameter of pit bottom L1 and the inclination of pit wall (L-L1) increase linearly with the increase of single pulse energy E and spot overlapping rate. The order of inner and outer circumference of laser scanning has no effect on the depth of pits. But it will affect the diameter of the bottom of the pit. When scanning the outer circumference firstly, a larger bottom diameter pit will be formed. The shape of the pit is controllable without die. The study is helpful to the further study on die-less laser micro drawing progressive forming.
  • Figure  1.   Schematic diagram of process experiment

    Figure  2.   Schematic diagram of laser scanning path

    Figure  3.   Typical multipoint impact pits

    Figure  4.   Typical profile lines of the produced 3-D pits

    Figure  5.   Relationship between single pulse energy E and pit depth h, plane diameter L1 and 2h/(L-L1)

    Figure  6.   Surface condition diagram of copper foil after different laser energies

    Figure  7.   Schematic diagram of depth h and plane diameter L1 of the concave pit with the increase of energy

    Figure  8.   Relationship between the overlap rate of the spot depth h, plane diameter L1 and 2h/(L-L1)

    Figure  9.   Surface condition diagram of copper foil after laser shocking with different overlap rates of spot

    Figure  10.   Pits profile after laser scanning in different scanning sequences

  • [1]

    ZUO H, ZHANG K, CAO X, et al. Research of microstructure and residual stress of copper foils processed by laser shock forming[J]. Laser Technology, 2018, 42(1):94-99(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201801018

    [2]

    LI X Ch, ZHANG Y K, ZHOU J Y, et al. Analysis of residual stress on surface of AZ31 magnesium alloy after laser shock processing[J]. Laser Technology, 2016, 40(1):5-10(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201601003

    [3]

    ZHANG J, HUA Y Q, CAO J D. Simulation of propagation characteristics of stress wave in copper films with laser shock processing[J].Laser Technology, 2016, 40(4):601-605(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201604030

    [4]

    YANG J D, ZHOU W F, YANG T, et al. Nanocrystallization of Ti-6Al-4V alloy by multiple laser shock processing[J]. Laser Technology, 2017, 41(5):754-758(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201705027

    [5]

    ZHANG W H, LIU H X, SHEN Z B, et al. Experimental research on laser-shock flexible micro-forming of multilayer-metal composite sheets[J]. Chinese Journal of Lasers, 2017, 44(7):0702001(in Chinese). DOI: 10.3788/CJL

    [6]

    ZHANG D, LIU L H, GUO H, et al. Experiment and simulation of manufacturing microparts by laser indirect shocking[J]. Laser & Optoelectronics Progress, 2016, 53(8):081404(in Chinese). http://cn.bing.com/academic/profile?id=662b0ff0b7cc0ea7c842934d3fc5345b&encoded=0&v=paper_preview&mkt=zh-cn

    [7]

    GUO Y Sh, SUN X C, YANG X, et al. Fabrication and controlling of metal sheets based on dynamic and mechanical effect of laser[J]. Laser & Optoelectronics Progress, 2015, 52(8):081402(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGDJ201508024.htm

    [8]

    HACKEL L, HARRIS F. Contour forming of metals by laser peening: USA 6410884[P]. 2012-06-25. ZHANG W, YAO Y L. Micro scale laser shock processing of metallic[J]. Journal of Manufacturing Science & Engineering, 2002, 124(2): 369-378.

    [9]

    ZHANG W,YAO Y L.Micro scale laser shock processing of metallic [J].Journal of Manufacturing Science & Engineering,2002,124 (2):369-378.

    [10]

    ZHONG M L, FAN P X. Applications of laser nano manufacturing technologies[J]. Chinese Journal of Lasers, 2011, 38(6):0601001(in Chinese). DOI: 10.3788/CJL201138.0601001

    [11]

    VOLLERTSEN F, HU Z, NIEHOFF H S, et al. State of the art in micro forming and investigations into micro deep drawing[J]. Journal of Materials Processing Technology, 2004, 151(1):70-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=28d1d89bb8becf6c3f71258545d11a30

    [12]

    LIU H, SHEN Z, WANG X, et al. Micromould based laser shock embossing of thin metal sheets for MEMS applications[J]. Applied Surface Science, 2010, 256(14):4687-4691. DOI: 10.1016/j.apsusc.2010.02.073

    [13]

    SHEN Z, LIU H, WANG X, et al. Micromold-based laser shock embossing of metallic foil:fabrication of large-area three-dimensional microchannel networks[J]. Advanced Manufacturing Processes, 2011, 26(9):1126-1129. DOI: 10.1080/10426914.2010.532528

    [14]

    SHEN Z, GU C, LIU H, et al. Fabricating three-dimensional array features on metallic foil surface using overlapping laser shock embossing[J]. Optics & Lasers in Engineering, 2013, 51(8):973-977. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=33b0bea63b5c04e833dafe3d43520ce9

    [15]

    WANG X, DU D, ZHANG H, et al. Investigation of microscale laser dynamic flexible forming process-Simulation and experiments[J]. International Journal of Machine Tools & Manufacture, 2013, 67(2):8-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2fcc8ef0f12596d3a9e97a55b0f7d32e

    [16]

    WANG X, MA Y, SHEN Z, et al. Size effects on formability in microscale laser dynamic forming of copper foil[J]. Journal of Materials Processing Technology, 2015, 220(1):173-183. http://www.sciencedirect.com/science/article/pii/S0924013615000229

    [17]

    NAGARAJAN B, CASTAGNE S, WANG Z. Mold-free fabrication of 3-D microfeatures using laser-induced shock pressure[J]. Applied Surface Science, 2013, 268(3):529-534. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0c7b9036d4dc46c24d483141ace48fa6

    [18]

    YE Y, FENG Y, LIAN Z, et al. Mold-free fs laser shock micro forming and its plastic deformation mechanism[J]. Optics & Lasers in Engineering, 2015, 67(11):74-82. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234309447/

    [19]

    DAI Y B, FAN Y J, LI M Y, et al.Study on numerical simulation of multi-micro laser shock forming[J]. Infrared and Laser Engineering, 2015, 44(12):50-56(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc2015z1010

  • 期刊类型引用(3)

    1. 石永华,王天序,詹家通. K-TIG焊接研究现状. 焊接学报. 2024(11): 35-44 . 百度学术
    2. 李思阳,高晓龙,刘晶,郭旭侠. 物理场辅助激光焊接的研究现状. 宝鸡文理学院学报(自然科学版). 2020(02): 43-48 . 百度学术
    3. 王芸鹏,石岩. 磁场对工业纯镍激光焊接组织与耐腐蚀性影响. 激光技术. 2019(01): 19-24 . 本站查看

    其他类型引用(7)

图(10)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  1
  • PDF下载量:  6
  • 被引次数: 10
出版历程
  • 收稿日期:  2018-01-17
  • 修回日期:  2018-03-29
  • 发布日期:  2018-11-24

目录

    /

    返回文章
    返回