Loading [MathJax]/jax/output/SVG/jax.js
高级检索

基于彩色CCD的激光熔覆熔池温度闭环控制研究

孙华杰, 石世宏, 石拓, 傅戈雁, 陈磊

孙华杰, 石世宏, 石拓, 傅戈雁, 陈磊. 基于彩色CCD的激光熔覆熔池温度闭环控制研究[J]. 激光技术, 2018, 42(6): 745-750. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.004
引用本文: 孙华杰, 石世宏, 石拓, 傅戈雁, 陈磊. 基于彩色CCD的激光熔覆熔池温度闭环控制研究[J]. 激光技术, 2018, 42(6): 745-750. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.004
SUN Huajie, SHI Shihong, SHI Tuo, FU Geyan, CHEN Lei. Research of close-loop control of molten pool temperature during laser cladding process based on color CCD[J]. LASER TECHNOLOGY, 2018, 42(6): 745-750. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.004
Citation: SUN Huajie, SHI Shihong, SHI Tuo, FU Geyan, CHEN Lei. Research of close-loop control of molten pool temperature during laser cladding process based on color CCD[J]. LASER TECHNOLOGY, 2018, 42(6): 745-750. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.004

基于彩色CCD的激光熔覆熔池温度闭环控制研究

基金项目: 

国家自然科学基金资助项目 51675359

详细信息
    作者简介:

    孙华杰(1992-), 男, 硕士研究生, 主要从事激光熔覆快速成形控制方面的研究

    通讯作者:

    石世宏, E-mail:shishihong@suda.edu.cn

  • 中图分类号: TN247

Research of close-loop control of molten pool temperature during laser cladding process based on color CCD

  • 摘要: 为了保持激光熔覆过程中熔池温度的相对稳定,采用比色测温与比例-积分-微分(PID)控制策略相结合的方法实现了熔池温度的闭环控制,搭建了一套基于双通道彩色CCD的激光熔覆成形熔池温度在线测控系统。将发射率ε纳入到待定系数K中,建立了灰度比值与K的对应关系,推导出了熔池温度的计算公式。基于Socket通信实现了温度在工控机与机器人控制器之间的信号传递,设计了基于激光功率变化的温度控制器算法。结果表明,此系统能实时准确地测量并控制熔池温度,控制精度在3%以内;将该系统运用于薄壁圆筒堆积成形实验中,能够有效消除激光熔覆成形过程中的温度累积效应;成形件底部与顶部外径仅相差0.9mm,成形件各处显微组织差异较小,组织致密均匀。该控制方案具有实时性好、成本较低、便于集成应用等优点。
    Abstract: In order to maintain the molten pool temperature relatively stable in laser cladding process, close-loop control of molten pool temperature was realized by the combination of colorimetric temperature measurement and proportional-integral-differential (PID) control strategy. A set of on-line measurement and control system for molten pool temperature of laser cladding based on dual-channel color CCD was built. Emissivity ε was incorporated into the undetermined coefficient K, and the corresponding relationship between gray ratio and K was established, and the calculating formula for the temperature of the molten pool was derived. Based on Socket communication, the signal transmission between industrial personal computer and robot controller was realized, and the algorithm of temperature controller based on laser power variation was designed. The experimental results show that, the system can measure and control the temperature of molten pool in real time and accurately, the control accuracy within 3%. The system is applied to thin-walled cylinder stacking forming experiment, which can effectively eliminate the temperature accumulation effect during laser cladding forming process. The difference between the outer diameter of the bottom and top part of the forming part is only 0.9mm. The control scheme has the advantages of good real-time performance, low cost and easy integration.
  • 获得高功率优质的超短脉冲光源一直是国内外光纤光学研究的热点问题。2000年, FERMANN等人[1]首次在理论和实验上证明了带有增益的光纤放大器能够产生自相似脉冲。所谓自相似脉冲是指产生于色散渐减光纤(dispersion decreasing fiber, DDF)或光纤放大器正色散区的一类啁啾近乎线性、时域波形类似抛物线形状的渐进性脉冲。自相似脉冲具有许多优点[2-3]:传输特性只与入射脉冲的能量和和光纤参量有关,与入射脉冲形状无关;因其产生的啁啾具有很强的线性,所以高功率传输时有抵御光波分裂的能力,能显著提升脉冲压缩的质量,故如何利用自相似脉冲来产生超短脉冲输出便成为了研究的热点[4]。自相似脉冲的压缩方法主要采用啁啾补偿技术,常利用色散补偿光纤(dispersion compensation fiber, DCF)[5-6]、啁啾光纤光栅[7]等色散补偿器件或采用预啁啾处理[8]等方法来进行啁啾补偿,其中DCF因补偿效果好、技术相对成熟且使用方便得到了广泛的应用。近年来,绝大部分的研究都主要集中在如何获取高线性啁啾的脉冲进行后期的压缩补偿,而对于补偿光纤的设计却鲜有报道。因此,本文中基于啁啾补偿技术研究自相似脉冲啁啾补偿光纤的设计,采用色散渐增光纤进行自相似脉冲的啁啾补偿。首先基于DDF产生具有强线性啁啾的自相似脉冲,进而基于啁啾特性研究自相似脉冲的后续压缩补偿问题,啁啾补偿光纤的设计采用普通色散补偿光纤以及色散渐增光纤,探讨了两种类型的压缩光纤对自相似脉冲的线性啁啾补偿效果以及高功率压缩脉冲输出性能的影响。

    当忽略高阶色散和非线性效应时,光脉冲在DDF中的传输可由薛定谔方程[9-10]表示:

    iA(z,T)z=iα2A(z,T)+β22D(z)2A(z,T)T2γ|A(z,T)|2A(z,T) (1)

    式中,A(z, T)为脉冲的包络的慢变振幅,T是随脉冲以群速度移动的参考系中时间的量度,z为传输的距离,α为光纤的损耗系数,β2z=0时的2阶群速度色散(group velocity dispersion, GVD)参量,D(z)为色散变化参量,γ为非线性系数。当忽略光纤的损耗时,该方程便演变为以下的非线性薛定谔方程:

    iA(z,T)z=β22D(z)2A(z,T)T2γ|A(z,T)|2A(z,T) (2)

    此时脉冲在DDF中的演化主要受2阶色散和低阶非线性影响。通过傅里叶变换,将(2)式改写为以下形式:

    A(z,T)z=(ˆD+ˆN)A(z,T) (3)

    式中, ˆD=β22D(z)2T2 ,表示2阶色散作用, ˆN=γ|A(z,T)|2A(z,T) ,表示非线性作用。由分步傅里叶方法可知,当光场通过一小段距离h时,色散和非线性效应可以分别作用。故每经过一小段距离h后的光脉冲的慢变振幅A(z+h, T)可由下式表示:

    A(z+h,T)=exp(hˆD)exp(hˆN)A(z,T) (4)

    本文中,DDF 2阶色散随着光纤长度z以双曲型变化,即 D(z)=11+Hz ,其中H为增益系数,归一化D(0)=1,采用无啁啾的高斯脉冲作为输入脉冲,T0为初始脉宽, 输入脉冲表达式为:

    A(0,T)=exp(T22T20) (5)

    初始输入高斯脉冲的半峰全宽(full width at half maximum, FWHM)TFWHM=1ps,中心波长为1550nm,当z=0时,2阶色散系数β2=1.36ps2/km,非线性系数γ=3.5(W·km)-1,增益系数H=22km-1。通过计算色散长度Ld=1.0608km,非线性长度LNL=0.0068km,实验中设置光纤长度为4倍的色散长度Ld,此时由于光纤长度远大于非线性长度,GVD效应会对光脉冲传输起主要作用。通过前面的分步傅里叶法,可得到脉冲在DDF中不同位置的演化的数值仿真值。图 1图 2中分别给出脉冲的时域演化趋势和输出脉冲的啁啾曲线。

    Figure 1. Schematic diagram of pulse evolution in DDF
    Figure  1.  Schematic diagram of pulse evolution in DDF
    Figure 2. Schematic diagram of output pulse chirp
    Figure  2.  Schematic diagram of output pulse chirp

    图 1中可以看到,随着传输距离的增大,时域内脉冲不断进行展宽。其展宽的原因在传输前期主要来自于2阶GVD效应,但随着2阶GVD效应的减小,非线性效应(self-phase modulation, SPM)会逐渐变强,当GVD和SPM满足一定关系[11]时, 就会产生具有线性啁啾的自相似脉冲,因此需要合理选择DDF的长度,保证光脉冲完成自相似演化。当光脉冲经过4倍的Ld之后,可以看到,输出脉冲的啁啾具有较大的线性范围,此时SPM效应所产生的非线性啁啾在整个脉冲范围内几乎被正常GVD效应线性化,可以认为此时脉冲已经完成了自相似演化。

    由于自相似脉冲在传输的过程中其GVD效应远大于SPM效应,因此对演化完成后的自相似脉冲进行色散补偿后,便可以对自相似脉冲进行压缩。对色散进行补偿[11-13]的做法是在DDF后引入一段带有相反色散的光纤。对于引入相反色散光纤进行压缩脉冲可以这样理解,对于无初始啁啾的高斯脉冲在经过适当距离的DDF后,产生具有线性啁啾的自相似脉冲后在进入反常色散的光纤时,可以看作是带有啁啾的高斯脉冲,其入射场可表示为:

    U(0,T)=exp[(1+iC)T22T20] (6)

    式中, C为线性啁啾参量,由于高斯脉冲经过了带有正常色散DDF,所以自相似脉冲感应的是正啁啾,因此啁啾参量C>0。当不考虑非线性效应时,脉冲在具有线性色散介质光纤时满足以下线性微分方程:

    iU(z,T)z=β222U(z,T)T2 (7)

    当输入脉冲为带啁啾的高斯脉冲时,可求得上述方程的解为:

    U(z,T)=T0[T20iβ2z(1+iC)]1/2×exp{(1+iC)T22[T20iβ2z(1+iC)]} (8)

    通过计算得到在传输距离为z时的脉冲宽度T1与初始脉冲脉宽T0存在以下关系:

    T1=[(1+Cβ2zT20)2+(β2zT20)2]1/2T0 (9)

    从(9)式可以看出,若初始脉冲啁啾与光纤的2阶色散参量符号相反时,在传输适当的距离内啁啾高斯脉冲会被压缩,且存在一个最窄的压缩脉宽T1,与光纤的2阶色散参量和长度有关。同样对于带有线性正啁啾的自相似脉冲也是一样,通过引入一段带有反常色散的光纤,在经过适当的距离后,就能够对自相似脉冲进行压缩。

    理论上,只要引入一段带有反常色散的光纤都能实现脉冲压缩的目的,因此本文中分别引入带有反常色散的色散补偿光纤(2阶色散为常量)和带有反常色散的线性渐增光纤来对自相似脉冲进行压缩,以探究不同类型的反常色散光纤对自相似脉冲的压缩影响。取色散补偿光纤的2阶色散β2=-1.36(ps2/km),非线性系数γ=1(W·km)-1;色散线性渐增光纤2阶色散β2(z)=β2(0)(1+pz),其中初始2阶色散系数β2(0)=-1.36(ps2/km),色散渐增系数p取为1km-1,非线性系数与色散补偿光纤保持一致。通过数值仿真可以得到自相似脉冲经过各段反常色散光纤后的脉冲压缩情况。图 3图 4分别为自相似脉冲经过普通色散补偿光纤和色散线性渐增光纤的压缩示意图,图 5为自相似脉冲经过色散补偿和色散线性渐增光纤脉冲后的压缩对比图。

    Figure 3. Schematic diagram of pulse compression of ordinary dispersion compensation fiber
    Figure  3.  Schematic diagram of pulse compression of ordinary dispersion compensation fiber
    Figure 4. Schematic diagram of pulse compression for linearly increasing dispersion fiber
    Figure  4.  Schematic diagram of pulse compression for linearly increasing dispersion fiber
    Figure 5. Partial enlarged view of pulse compression of dispersion compensation fiber and linearly increasing dispersion fiber
    Figure  5.  Partial enlarged view of pulse compression of dispersion compensation fiber and linearly increasing dispersion fiber

    通过数值仿真,当获得最佳超短脉冲输出时,色散补偿光纤长度为97.8m,超短输出脉冲半峰全宽TFWHM=52.6fs,输出脉冲峰值功率为684.5W;而色散线性渐增光纤长度为93.0m,超短输出脉冲半峰全宽TFWHM=53.8fs,输出脉冲峰值功率为688.2W。可以看到, 当色散渐增系数p=1km-1时,色散线性渐增光纤与色散补偿光纤一样能将自相似脉冲压缩至50fs量级,但色散线性渐增光纤与色散补偿光纤所产生的脉冲基座略有不同,色散线性渐增光纤的基座波动相对较小,且色散线性渐增光纤的光纤长度也小于色散补偿光纤。因此,相比较于普通色散补偿光纤,色散线性渐增光纤能获取较高质量的自相似脉冲压缩。

    为了进一步探究色散渐增系数p对压缩质量的影响,在保持其它参量不变的情况下改变p值,观察脉冲在色散线性渐增光纤中的演化情况。图 6p为5km-1和10km-1时的最佳超短脉冲输出示意图。

    Figure 6. Schematic diagram of pulse compression of fibers with linearly increasing dispersion at p=5km-1, 10km-1
    Figure  6.  Schematic diagram of pulse compression of fibers with linearly increasing dispersion at p=5km-1, 10km-1

    表 1为自相似脉冲经过不同p值的色散线性渐增光纤后输出最短脉冲的数值模拟值。通过数值仿真可知,当p=5km-1时,压缩至最短脉冲所需的光纤长度缩短为81.0m,最短脉冲半峰全宽TFWHM=58.0fs; 当p=10km-1时,所需的光纤长度缩短为74.2m,最短脉冲半峰全宽TFWHM=61.8fs。由以上结果可以得出:当保持光纤其它参量不变时,增大色散线性渐增系数p可以明显缩短超短脉冲输出时的补偿光纤长度,有利于减小脉冲在传输过程中产生的损耗,从而有效提高自相似脉冲的压缩质量,但随着色散渐增系数p迅速提高,其输出脉冲的峰值功率和脉宽也会略微有所降低。最终在p=10km-1时获得功率为630.6W、脉宽为61.8fs的超短脉冲输出。

    Table  1.  Numerical simulation results of fibers with linearly increasing dispersion
    p=1km-1 p=5km-1 p=10km-1
    optimal compensation fiber length/m 93.0 81.0 74.2
    full width at half maximum of ultrashort pulse output/fs 53.8 58.0 61.8
    peak power of output pulse/W 688.2 655.1 630.6
    下载: 导出CSV 
    | 显示表格

    为了验证其它类型的色散渐增光纤是否也有类似的规律,又引入了色散指数渐增光纤来压缩自相似脉冲。色散指数渐增光纤的2阶色散可以表示为:β2(z)=β2(0)exp(pz),其中初始2阶色散系数β2(0)=-1.36(ps2/km),与色散线性渐增光纤一样分别取p为1km-1,5km-1,10km-1,非线性系数与上述光纤保持一致,通过数值仿真得出自相似脉冲在色散指数渐增光纤中的演化结果。图 7p分别为1km-1,5km-1,10km-1时色散指数渐增光纤的脉冲压缩示意图。

    Figure 7. Schematic diagram of pulse compression of fiber with increasing dispersion index at p=1km-1, 5km-1, 10km-1
    Figure  7.  Schematic diagram of pulse compression of fiber with increasing dispersion index at p=1km-1, 5km-1, 10km-1

    表 2为自相似脉冲经过不同p值的色散指数渐增光纤后输出最短脉冲的数值模拟值。当色散渐增系数p=1km-1时,压缩至最短脉冲所需的色散指数渐增光纤长度为92.5m,最短脉冲半峰全宽TFWHM=54.2fs,输出脉冲峰值功率为674.2W;当色散渐增系数p=5km-1时,压缩至最短脉冲所需的光纤长度为82.5m,最短脉冲半峰全宽TFWHM=59.4fs,输出脉冲峰值功率为643.3W;当色散渐增系数p=10km-1时,压缩至最短脉冲所需的光纤长度缩短为70.3m,最短脉冲半峰全宽TFWHM=64.4fs,输出脉冲峰值功率为604.4W。

    Table  2.  Numerical simulation results of fibers with increasing dispersion index
    p=1km-1 p=5km-1 p=10km-1
    optimal compensation fiber length/m 92.5 82.5 70.3
    full width at half maximum of ultrashort pulse output/fs 54.2 59.4 64.4
    peak power of output pulse/W 674.2 643.3 604.4
    下载: 导出CSV 
    | 显示表格

    上述结果与利用色散线性渐增光纤压缩脉冲得出的结论不谋而合,因此可以认为: 当保持其它参量不变时,增大色散渐增系数,能有效地缩短脉冲压缩所需的补偿光纤长度,在实际的光纤线路中,缩短补偿光纤长度就意味着能避免更多的损耗,从而提高脉冲的压缩质量,得到高质量的超短脉冲输出,但随着色散渐增系数的迅速增加,输出功率和脉宽也会略微减小,因此需要合理地选择色散渐增系数,在保证脉冲压缩质量的前提下缩短压缩光纤的长度。同时, 在比较指数型色散渐增光纤和线性型色散渐增光纤时可以发现,当色散渐增系数相等时,线性型色散渐增光纤的压缩效果要比指数型色散渐增光纤的压缩效果好。

    利用DDF产生了具有线性啁啾的自相似脉冲,采用啁啾补偿技术进行了自相似脉冲压缩。输入半峰全宽TFWHM=1ps、峰值功率为42W的高斯脉冲,经过DDF后形成带有线性啁啾的自相似脉冲,随后又通过长度为97.8m的普通色散补偿光纤后得到半峰全宽TFWHM=52.6fs、峰值功率为684.5W的超短脉冲输出。在此基础上,讨论了色散线性渐增光纤和色散指数渐增光纤对压缩脉冲的影响,当自相似脉冲通过色散渐增系数p=1km-1、长度为93.0m的色散线性渐增光纤后得到半峰全宽TFWHM=53.8fs、峰值功率为688.2W的超短脉冲输出;通过色散渐增系数p=5km-1、长度为81.0m的色散线性渐增光纤后得到半峰全宽TFWHM=58.0fs、峰值功率为655.1W的超短脉冲输出;通过色散渐增系数p=10km-1、长度为74.2m的色散线性渐增光纤后得到半峰全宽TFWHM=61.8fs、峰值功率为630.6W的超短脉冲输出。当自相似脉冲通过色散渐增系数p=1km-1、长度为92.5m的色散指数渐增光纤后,得到半峰全宽TFWHM=54.2fs、峰值功率为674.2W的超短脉冲输出;通过色散渐增系数p=5km-1、长度为82.5m的色散指数渐增光纤后,得到半峰全宽TFWHM=59.4fs、峰值功率为643.3W的超短脉冲输出;通过色散渐增系数p=10km-1、长度为70.3m的色散指数渐增光纤后,得到半峰全宽TFWHM=64.4fs、峰值功率为604.4W的超短脉冲输出。结果表明, 利用色散渐增光纤作为啁啾补偿光纤能明显缩短补偿光纤的长度,在保证其它参量不变的情况下,增大色散渐增系数会进一步缩短脉冲压缩所需的光纤长度,但随着色散渐增系数的迅速增加,输出功率和脉宽也会略微减小。

  • Figure  1.   Principle of hollow-laser beam inside powder feeding

    Figure  2.   Setup of system hardware

    Figure  3.   Infrared thermometer site calibration

    Figure  4.   Relationship between K and Lr, g

    Figure  5.   Digital image processing of molten pool

    Figure  6.   Relationship between molten pool temperature and laser power

    Figure  7.   Comparison of the formed parts

    Figure  8.   Relationship between average molten pool temperature, laser power and the number of cladding layers

    Figure  9.   Scanning electron microscope images marked A, B, C in Fig. 7b

    Table  1   Relationship between gray value and temperature

    R gray value G gray value gradation ratio calibration temperature/℃
    73 67 1.1 1300
    98 70 1.4 1400
    122 72 1.7 1500
    159 75 2.1 1600
    201 77 2.6 1700
    254 81 3.1 1800
    下载: 导出CSV

    Table  2   Statistical results based on Fig. 6

    laser power/W Ta/℃ Tmax/℃ Tmin/℃ dT/℃
    400 1221.9 1562.3 858.1 704.2
    600 1358.1 1747.9 1093.2 654.7
    800 1531.6 1836.4 958.3 878.1
    下载: 导出CSV

    Table  3   Parameters comparison of the formed parts with controller and without controller

    parameter without controller with controller
    height/mm 24.8 41.0
    bottom diameter/mm 35.7 45.5
    top outer diameter/mm 38.5 44.6
    middle diameter/mm 38.1 45.1
    下载: 导出CSV
  • [1]

    CHOI J, CHANG Y. Characteristics of laser aided direct metal/material deposition process for tool steel[J]. Internationnal Journal of Mchine Tools and Manufacture, 2005, 45(4):597-607. http://www.sciencedirect.com/science/article/pii/S089069550400197X

    [2]

    MAZUDER J, DUTTA D, KIKUCHI N, et al. Closed loop direct metal deposition:art to part[J]. Optics and Lasers in Engineering, 2000, 34(4):397-414. http://www.sciencedirect.com/science/article/pii/S0143816600000725

    [3]

    HUANG W D. Laser solid forming techlogy:Rapid freeform fabrication of hign performance and compact metallic component[M]. Xi'an:Northwestern Polytechnical University Press, 2007:1-4(in Chin-ese).

    [4]

    DU Q, HANG X L, WANG M D, et al. Mechanism and experimental study of laser milling on laser cladding parts[J].Laser & Optoelectronics Progress, 2015, 52(10):101403(in Chinese).

    [5]

    JIANG Y J, LU B H, FANG X W, et al. 3-D printing-based internet collect-manufacturing mode[J]. Computer Integrated Manufacturing System, 2016, 22(6):1424-1433(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjjczzxt201606005

    [6]

    SHI T, LU B H, WEI Zh Y, et al. Research of closed-loop control of deposition height in laser metal deposion[J]. Chinese Journal of Lasers, 2017, 44(7):0702004(in Chinese). DOI: 10.3788/CJL

    [7]

    SONG L, BAGAVATH-SINGH V, DUTTA B, et al. Control of melt pool temperature and deposition height during direct metal deposition process[J]. International Journal of Advanced Manufacturing Technology, 2012, 58(1/4):247-256. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e131b322edd303794ad9f35bf07a6806

    [8]

    TAN H. Temperature measurement and research on microstructure contronling in laser rapid forming[D].Xi'an: Northwestern Polytechnical University, 2005: 38-57(in Chinese).

    [9]

    CHEN Zh. Temperature measurement of motlen pool in laser cladding process[D]. Suzhou: Soochow University, 2006: 31-48(in Chin-ese).

    [10]

    JIANG Sh J, LIU W J. Study on real-time measurement for laser molten pool temperature field by images colorimetric method[J]. Information and Control, 2008, 37(6):747-751(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XXYK200806021.htm

    [11]

    LEI J B, YANG X Ch, WANG Y Sh, et al. Research on model of measuring and controling temperature fields of molten pool in laser remanufacturing[J]. Tianjin Polytechnic University, 2003, 22(5):56-58(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-TJFZ200305015.htm

    [12]

    LEI J B, YANG X Ch, CHEN J, et al. Study on design of laser molten pool temperature field measurement software by CCD[J]. Applied Laser, 2007, 27(1):5-8(in Chinese). http://en.cnki.com.cn/article_en/cjfdtotal-yyjg200701001.htm

    [13]

    BI G J, SCHVRMANN B, GASSER A, et al. Development and qualification of a novel laser-cladding head with integrated sensors[J]. International Journal of Machine Tools & Manufacture, 2007, 47(3):555-561. http://www.sciencedirect.com/science/article/pii/S0890695506001404

    [14]

    HU D, KOVACEVIC R. Sensing, modeling and control for laser-based additive manufacturing[J]. International Journal of Machine Tools & Manufacture, 2003, 43(1):51-60. http://www.sciencedirect.com/science/article/pii/S0890695502001633

    [15]

    TOYSERKANI E, KHAJEPOUR A. A Mechatronics approach to laser powder deposition process[J]. Mechatronics, 2006, 16(10):631-641. DOI: 10.1016/j.mechatronics.2006.05.002

    [16]

    WANG C, SHI Sh H, FANG Q Q, et al. Research on laser cladding forming of close-paked multivariant twisty thin-wall parts[J]. Chin-ese Journal of Lasers, 2017, 44(6):0602004(in Chinese). DOI: 10.3788/CJL

    [17]

    DENG Zh Q, SHI Sh H, ZHOU B, et al. Laser cladding forming of arcuate cantilevered entity part[J]. Infrared and Laser Engineering, 2017, 46(10):1006004(in Chinese). DOI: 10.3788/IRLA

    [18]

    SHI T, WANG Y Q, LU B H, et al. Laser cladding forming of cantilevered thin-walled part based on hollow-laser beam inside powder feeding technology[J]. Chinese Journal of Lasers, 2015, 42(10):1003003(in Chinese). DOI: 10.3788/CJL

    [19]

    XU J M, PAN X F. Research of robot monitoring system based on socket communication[J]. Computer Measurement & Control, 2017, 25(7):70-73(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-JZCK201707018.htm

    [20]

    HUANG J, ZHANG K, ZHU X P, et al. Calibration of CCD temperature measurement system based on RGB digital filtering in laser cladding[J]. Journal of Optoelectronnics·Laser, 2013, 24(5):968-973(in Chinese).

    [21]

    LI J J. An intensity fusion method applied to color CCD-based coloricmetric temperature measurement[J]. Computer Measurement & Control, 2012, 20(1):177-179(in Chinese).

    [22]

    MENG W D, SHI Sh H, FU G Y, et al. Experimental study about vertical surface accumulation with coaxial inside-beam power feeding[J]. Laser Technology, 2015, 39(5):594-597(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201505003.htm

图(9)  /  表(3)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-28
  • 修回日期:  2018-03-11
  • 发布日期:  2018-11-24

目录

/

返回文章
返回