高级检索

激光辅助复合电沉积加工速率及表面质量研究

焦健, 张朝阳, 戴学仁, 朱浩, 徐坤, 顾秦铭

焦健, 张朝阳, 戴学仁, 朱浩, 徐坤, 顾秦铭. 激光辅助复合电沉积加工速率及表面质量研究[J]. 激光技术, 2018, 42(6): 739-744. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.003
引用本文: 焦健, 张朝阳, 戴学仁, 朱浩, 徐坤, 顾秦铭. 激光辅助复合电沉积加工速率及表面质量研究[J]. 激光技术, 2018, 42(6): 739-744. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.003
JIAO Jian, ZHANG Zhaoyang, DAI Xueren, ZHU Hao, XU Kun, GU Qinming. Study on processing speed and surface quality of laser-assisted composite electro-deposition[J]. LASER TECHNOLOGY, 2018, 42(6): 739-744. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.003
Citation: JIAO Jian, ZHANG Zhaoyang, DAI Xueren, ZHU Hao, XU Kun, GU Qinming. Study on processing speed and surface quality of laser-assisted composite electro-deposition[J]. LASER TECHNOLOGY, 2018, 42(6): 739-744. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.003

激光辅助复合电沉积加工速率及表面质量研究

基金项目: 

江苏省六大人才高峰人才资助项目 GDZB-019

国家自然科学基金资助项目 51275218

国家自然科学基金资助项目 51675242

江苏省高校自然科学研究重大资助项目 16KJA460005

详细信息
    作者简介:

    焦健(1992-), 男, 硕士研究生, 主要从事激光电化学复合沉积过程检测方面的研究

    通讯作者:

    张朝阳: 张朝,E-mail:zzhaoyang@126.com

  • 中图分类号: TN249

Study on processing speed and surface quality of laser-assisted composite electro-deposition

  • 摘要: 为了解决纳米复合电沉积加工速率慢、颗粒易团聚以及沉积层表面质量差等问题,采用构建高能脉冲激光辅助纳米复合电沉积的方法,利用激光辐照产生定域微区搅拌,缓解颗粒团聚现象,加速电化学反应速率,提高沉积层表面质量,并对加工过程进行了有限元仿真和实验验证。结果表明,激光与电化学复合能够明显的提高复合沉积速率,且激光的冲击作用能够提高晶粒的结合性,进而促进镀层的致密化;同时此冲击作用也能降低纳米粒子的团聚几率,细化镀层晶粒。此研究结果对电解加工技术的发展具有一定帮助。
    Abstract: In order to solve the problems of slow processing rate of nano composite electrodeposition, easy agglomeration of particles and poor surface quality of deposition layer, the method of building high energy pulsed laser-assisted nano composite electrodeposition was adopted. Laser irradiation was used to produce localized microregion agitation to alleviate the agglomeration of particles, accelerate the electrochemical reaction rate and improve the surface quality of deposition layer. After finite element simulation and experimental verification, the results show that, laser and electrochemical composing can obviously increase the rate of composite deposition, and the impact of laser can increase the binding of grain, and then promote the densification of the coating. At the same time, this impact can also reduce the agglomeration probability of nanoparticles and refine the coating grain. The research results will be helpful to the development of electrochemical machining technology.
  • Figure  1.   Structural diagram of laser electrochemical composite deposition process system

    Figure  2.   Laser shock wave sound pressure signal under different solutions

    Figure  3.   Simulation model of laser electrochemical composite deposition

    Figure  4.   Simulation flow field of laser electrochemical composite deposition

    Figure  5.   Relationship between deposition rate and r

    Figure  6.   Relationship between cathode thickness and r

    Figure  7.   Relationship between pressure of cathode substrate and r

    Figure  8.   Schematic of laser electrochemical composite deposition processing

    Figure  9.   Deposition rate under different conditions

    Figure  10.   Surface morphology of coatings under different laser energies

    Table  1   Change of quality and deposition rate

    laser single
    pluse power/mJ
    m1/
    mg
    m2/
    mg
    Δm/
    mg
    v/
    (mg·min-1)
    0 5227.38 5971.39 744.01 6.2001
    150 5433.39 6307.63 874.24 7.2853
    下载: 导出CSV
  • [1]

    TUDELA I, ZHANG Y, PAL M, et al. Ultrasound-assisted electrodeposition of composite coatings with particles[J]. Surface & Coatings Technology, 2014, 259:363-373. http://www.sciencedirect.com/science/article/pii/S0257897214005313

    [2]

    CHEN J T, FEI J Y. Study on the process and properties of Al2O3/Ni composite coating by rapid electro deposition[J]. Corrosion Science & Protection Technology, 2016, 28(1):58-62(in Chinese).

    [3]

    IACOVETTA D, TAM J. Synthesis structure and properties of super hydrophobic nickel-PTFE nano-composite coatings made by electro-deposition[J].Surface & Coatings Technology, 2015, 279:134-141. http://cn.bing.com/academic/profile?id=ebd3cea4add0d50bd02a9c8c989bdffe&encoded=0&v=paper_preview&mkt=zh-cn

    [4]

    CAMARGO M K, TUDELA I. Ultrasound assisted electro deposition of Zn and Zn-TiO2 coatings[J]. Electrochimica Acta, 2016, 198:287-295. DOI: 10.1016/j.electacta.2016.03.078

    [5]

    LI X H, XUE Y J, AO Zh H, et al. Corrosion resistance of electrodeposited Ni-Nd2O3 nanocomposite coatings under combined ultrasonic conditions[J]. Surface Technology, 2013, 42(5):1-4(in Ch-inese).

    [6]

    ZHOU P W, ZHONG Y B. Behavior of Fe/nano-Si particles composite electrodeposition with a vertical electrode system in a static parallel magnetic field[J]. Electrochimica Acta, 2013, 111:126-135. DOI: 10.1016/j.electacta.2013.07.225

    [7]

    NIAN Q, LIU C R. Laser assisted electro-deposition of earth abundant Cu2ZnSnS4 photovoltaic thin film[J]. Manufacturing Letters, 2013, 1(1):54-58. DOI: 10.1002/pip.1174/full

    [8]

    ZHANG Zh Y, JIANG Y, et al. Experiment study of laser thermal enhanced electrochemical deposition[J]. Microsystem Technologies, 2017, 23(6):1695-1701. DOI: 10.1007/s00542-015-2759-1

    [9]

    LIN J, CHEN S H. The formation of micro/nanoparticles in laser-enhanced electroplating with continuous wave and pulsed Nd-YAG laser interactions[J]. Optics and Laser Technology, 2012, 44(1):169-176. DOI: 10.1016/j.optlastec.2011.06.013

    [10]

    YANG X L, LI Y, WANG J B. Study on measurement of optical absorption coefficient of liquid[J]. Laser Journal, 2004, 25(3):40-42(in Chinese).

    [11]

    ZHANG Zh Y, JIANG Y J, HUANG L, et al. Experiment study of laser thermal enhanced electrochemical deposition[J]. Microsystem Technology, 2017, 23(6):1695-1701. DOI: 10.1007/s00542-015-2759-1

    [12]

    JUNEGHANI M A, FARZAM M, ZOHDIRAD H. Wear and corrosion resistance and electroplating characteristics of electrodeposited Cr-SiC nano-composite coatings[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(7):1993-2001. DOI: 10.1016/S1003-6326(13)62688-6

    [13]

    CAI M X, ZHANG Zh Y, JIANG Y J. Experimental study on laser assisted local electrochemical deposition[J]. Journal of Nanjing University of Aeronautics, 2014, 46(5):769-773(in Chinese).

    [14]

    GAO L, ZHANG Zh Y, XIN N, et al. Simulation research on laser-assisted electrochemical etching[C]//2016 International Conference on Mechanical Engineering and Control Automation. New York, USA: IEEE, 2016: 580-588.

    [15]

    JIANG Y J, ZHANG Zh Y. Experimental study of laser thermal-mechanical enhanced electrochemical deposition[J]. Laser Technology, 2016, 40(5):660-664(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-JGJS201605009.htm

图(10)  /  表(1)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  0
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-14
  • 修回日期:  2018-03-04
  • 发布日期:  2018-11-24

目录

    /

    返回文章
    返回