高级检索

测污激光雷达探测气溶胶消光特性和Ångström指数

王杰, 陈亚峰, 刘秋武, 杨杰, 黄见, 胡顺星

王杰, 陈亚峰, 刘秋武, 杨杰, 黄见, 胡顺星. 测污激光雷达探测气溶胶消光特性和Ångström指数[J]. 激光技术, 2018, 42(6): 727-732. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.001
引用本文: 王杰, 陈亚峰, 刘秋武, 杨杰, 黄见, 胡顺星. 测污激光雷达探测气溶胶消光特性和Ångström指数[J]. 激光技术, 2018, 42(6): 727-732. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.001
WANG Jie, CHEN Yafeng, LIU Qiuwu, YANG Jie, HUANG Jian, HU Shunxing. Detection of aerosol extinction characteristics and Ångström index by monitoring pollutants lidar[J]. LASER TECHNOLOGY, 2018, 42(6): 727-732. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.001
Citation: WANG Jie, CHEN Yafeng, LIU Qiuwu, YANG Jie, HUANG Jian, HU Shunxing. Detection of aerosol extinction characteristics and Ångström index by monitoring pollutants lidar[J]. LASER TECHNOLOGY, 2018, 42(6): 727-732. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.001

测污激光雷达探测气溶胶消光特性和Ångström指数

基金项目: 

国家重大科研仪器设备研制专项基金资助项目 41127901

国家自然科学基金资助项目 41575032

国家自然科学基金资助项目 41505019

详细信息
    作者简介:

    王杰(1992-), 男, 硕士研究生, 主要从事激光雷达大气探测等方面的研究

    通讯作者:

    胡顺星, E-mail:sxhu@aiofm.ac.cn

  • 中图分类号: TN958.98

Detection of aerosol extinction characteristics and Ångström index by monitoring pollutants lidar

  • 摘要: 为了研究测污激光雷达对水平能见度和垂直气溶胶消光系数变化趋势的探测,采用污染气体探测激光雷达,以斜率法和Fernald方法,反演了301.5nm和446.6nm在水平及垂直方向的消光系数,以及波长的Ångström指数。结果表明,水平方向上,301.5nm和446.6nm的消光系数和能见度随时间变化均保持一致性;垂直方向上,301.5nm和446.6nm气溶胶消光系数随时空变化趋势相同,Ångström指数随着时间的推移有所变化,但空间变化趋势相同。该结果对分析差分吸收激光雷达修正气溶胶的影响是有所帮助的。
    Abstract: In order to study the detection of horizontal visibility and vertical aerosol extinction coefficient by monitoring pollutants lidar, the extinction coefficients of 301.5nm and 446.6nm in horizontal and vertical directions and wavelength Ångström index were retrieved by the slope method and the Fernald method. The result shows that, in the horizontal direction, the extinction coefficients and visibility of 301.5nm and 446.6nm vary with time consistently. In the vertical direction, the extinction coefficients of 301.5nm and 446.6nm follow the same trend in time and space. The Ångström index has changed with the change of time. But the spatial change trend is the same. The results are helpful to correct the effect of analytical differential absorption lidar on aerosol.
  • Figure  1.   Block diagram of monitoring pollutants lidar

    Figure  2.   Relationship between echo signal ln [P(z)z2]and distance z of atmospheric horizontal

    Figure  3.   The fitting curve of echo signal ln[P(z)z2] and distance z of atmospheric horizontal at 301.5nm and 446.6nm

    Figure  4.   The atmospheric level of visibility at 301.5nm and 446.6nm changes with time

    Figure  5.   Spatial and temporal distribution of aerosol extinction profile and corresponding Ångström index

    Figure  6.   Aerosol extinction profile and corresponding Ångström index at 2016-11-01T21:10

    Table  1   Specification of monitoring pollutants lidar

    transmitter(SO2)
    waelength 300.05nm(on), 301.5nm(off)
    laser class USA continum 8010 Nd:YAG laser(532nm) pump, Germany radiant dye laser(600.1nm, 603nm)
    repetition 10Hz
    energy 8mJ
    transmitter(NO2)
    waelength/nm 448.1nm(on), 446.6nm(off)
    laser class USA continum 8010 Nd:YAG laser(355nm) pump, Germany radiant dye laser(446.6nm, 448.1nm)
    repetition 10Hz
    energy 5mJ
    receiver
    telescope near newtonian,focus length 750mm,diameter 350mm,field of view 0.2mrad~2mrad
    optical filter central wavelength 300.75nm, band width 3.0nm(SO2), block OD5(200nm~1100nm), Φ=25.4mm; central wavelength 447.50nm, band width 3.0nm(NO2), block OD5(200nm ~1100nm), Φ=25.4mm
    detector (PMT) 9142QB,Φ=25mm,185mm~650mm, rise time <50ns,gains 105~106,voltage 750V~1200V
    A/D PCI-9826H, 20MS/s,channel number 4(16bit)
    下载: 导出CSV

    Table  2   Molecular extinction coefficient of three kinds of atmospheric pollutants at the corresponding wavelength

    pollutant NO2 SO2 O3
    waelength/nm 301.5 446.6 301.5 301.5
    N(z)σ(λ0)/km-1 0.014 0.043 0.025 0.034
    下载: 导出CSV
  • [1]

    ZHANG Ch G, ZHANG Y J, HAN D W, et al. Monitoring for the particlesemitted by vehicle with lidar[J]. Laser Technology, 2009, 33(2):130-133(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS200902008.htm

    [2]

    YAN Sh Sh, LI H H. Determination of geometrical form factor of a lidar by means of Raman-Mie method[J]. Laser Technology, 2013, 37(4):511-514(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201304021

    [3]

    CHI R L, WU D Ch, LIU B, et al. Dual-wavelength mie lidar for measuring the whole tropospheric aerosols[J]. Journal of Atmospheric and Environmental Optics, 2008, 3(3):179-186(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqyhjgxxb200803003

    [4]

    MAO M J, WU Y H, QI F D, et al. Mobile dual-wavelength mie lidar[J]. High Power Laser and Particle Beams, 2005, 17(5):677-680(in chinese). http://d.old.wanfangdata.com.cn/Periodical/qjgylzs200505009

    [5]

    WANG Q M, ZHANG Y M. Development of meteorological lidar[J]. Meteorological Science and Technology, 2006, 34(3):246-249(in Chinese). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_c5553c533655d4e125b994dcc7b2f632

    [6]

    ZHOU J, YUE G M, JIN Ch J, et al. Two-wavelength mie lidar for monitoring of tropospheric aerosol[J]. Acta Optica Sinica, 2000, 20(10):1412-1417(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb200010021

    [7]

    LIU J, HUA D X, LI Y, et al. Design of a compact Mie lidar system[J]. Journal of Xi'an University of Technology, 2007, 23(1):1-5(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XALD200701000.htm

    [8]

    IWASAKA Y, HAYASHIDA S. The effects of the volcanic eruption of St. Helens on the polarization properties of stratospheric aerosols-lidar measurement at Nagoya[J]. Journal of the Meteorological Society of Japan, 1981, 59(4):611-614. DOI: 10.2151/jmsj1965.59.4_611

    [9]

    LIU D, QI F D, JIN Ch J, et al. Polarization lidar observations of cirrus clouds and asian dust aerosols over Hefei[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(6):1093-1100(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=daqikx200306012

    [10]

    CHI R L, WU D Ch, LIU B, et al. Dual-wavelength Mie lidar observations of tropospheric aerosols spectroscopy and spectral analysis[J]. Spectroscopy and Spectral Analysis, 2009, 29(6):1468-1472(in Chinese). http://www.ncbi.nlm.nih.gov/pubmed/19810510/?ncbi_mmode=std

    [11]

    DI H G, HOU X L, ZHAO H, et al. Detrctions and analyses of aerosol optical properties under different weather conditions using multi-wavelength mie lidar[J]. Acta Physics Sinica, 2014, 63(24):248-255(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-WLXB201424029.htm

    [12]

    HUANG J, HU Sh X, CAO K F, et al.Design of three dimensional scanning control system for air pollution monitoring Lidar based on LabVIEW[J].Journal of Atmospheric and Environmental Optics, 2013, 8(2):124-129(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dqyhjgxxb201302006

    [13]

    LIN J M, CAO K F, HU Sh X, et al. The experiment study of SO2 measurement by differential absorption lidar[J]. Infrared and Laser Engineering, 2015, 44(3):872-879(in Chinese).

    [14]

    LIU Q W, WANG X B, CHEN Y F, et al. Detection of atmospheric NO2 concentration by differential absorption lidar based on dye lasers[J]. Acta Optica Sinica, 2017, 37(4):338-345(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-GXXB201704039.htm

    [15]

    CHEN M, SUN D S, LI H J, et al. Detective method and analysis of atmospheric slant visibility for lidar[J]. Infrared and Laser Engineering, 2006, 35(2):156-160(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc200602008

    [16]

    FERNALD F G. Analysis of atmospheric lidar observation[J].App-lied Optics, 1984, 23(5):652-653. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201802005

    [17]

    ZHANG Zh Y, SU L, CHEN L F. Retrieval and analysis of aerosol lidar ratio at several typical regions in China[J]. Chinese Journal of Lasers, 2013, 40(5):513002(in Chinese). DOI: 10.3788/CJL

图(6)  /  表(2)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-11
  • 修回日期:  2018-03-29
  • 发布日期:  2018-11-24

目录

    /

    返回文章
    返回