高级检索

空气中多杂质颗粒对光传输的影响特性研究

费莉, 黄颖, 赖小龙, 刘文晶

费莉, 黄颖, 赖小龙, 刘文晶. 空气中多杂质颗粒对光传输的影响特性研究[J]. 激光技术, 2018, 42(5): 709-712. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.023
引用本文: 费莉, 黄颖, 赖小龙, 刘文晶. 空气中多杂质颗粒对光传输的影响特性研究[J]. 激光技术, 2018, 42(5): 709-712. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.023
FEI Li, HUANG Ying, LAI Xiaolong, LIU Wenjing. Influence of multiple impurity particles in air on light propagation[J]. LASER TECHNOLOGY, 2018, 42(5): 709-712. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.023
Citation: FEI Li, HUANG Ying, LAI Xiaolong, LIU Wenjing. Influence of multiple impurity particles in air on light propagation[J]. LASER TECHNOLOGY, 2018, 42(5): 709-712. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.023

空气中多杂质颗粒对光传输的影响特性研究

基金项目: 

2016年重庆市本科高校"三特行动计划"基金资助项目 080703

详细信息
    作者简介:

    费莉(1988-), 女, 硕士, 讲师, 主要研究领域为测试计量技术及仪器、电子信息系统、光通信与光信息处理等。E-mail:feili2013@163.com

  • 中图分类号: TN929.12

Influence of multiple impurity particles in air on light propagation

  • 摘要: 为了研究空气中杂质颗粒对光传输的影响,采用有限元法分析了有多个杂质微粒同时存在的情况下,颗粒物连接处的光强分布情况,取得了不同颗粒物之间的强度差异数据,并给出了一种解决复杂多杂质微粒存在情况下的通用解决方案。结果表明,对于球体颗粒物杂质,当同时有两个杂质微粒存在时,穿过杂质的微粒呈现出从低到高的趋势,在杂质微粒互相接触的区域光强达到最大值;对于立方体杂质微粒,光强分布呈现出较强的波动特性,且光强强度比球体杂质微粒的光强强度在数量级上多了100倍。该研究模型可移植性强,能推广应用到多个领域,这一结果对后续开展光在气体中传播的理论是有帮助的。
    Abstract: To study the influence of impurity particles on light propagation in air, a finite element method was used to analyze the distribution of light intensity at the boundary of impurity particles at the presence of multiple impurity particles. The intensity difference data between different particles was acquired. A general solution was provided to solve the problem of complex impurity particles. After theoretical analysis and experimental verification, the results show that, for sphere particles, while there are two impurity particles at the same time, the particles passing through the impurity present a trend from low to high, and the intensity reaches the maximum in the area where the impurity particles are in contact with each other. For cube impurity particles, the intensity distribution exhibits a strong fluctuation property, and the intensity of light is 100 times more than that of sphere impurity particles. The research model has strong portability and can be widely applied to lots of fields. This result is helpful for the subsequent development of light propagation in air.
  • Figure  1.   Solving process of finite element method

    Figure  2.   Sphere subdivision results

    Figure  3.   Cube subdivision results

    Figure  4.   Light intensity distribution of sphere impurity

    Figure  5.   Light intensity distribution of cube impurity

  • [1]

    HU J B, LI M P. Design of novel tunable semiconductor lasers in optical fiber communication systems[J]. Laser Technology, 2016, 40(2):280-283(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201602027.htm

    [2]

    ZHANG B, ZHOU G Q, ZHOU X, et al. Design of multi-channel ranging system for lidar[J]. Laser Technology, 2016, 40(4):576-581(in Chinese). http://www.jgjs.net.cn/EN/Y2016/V40/I4/576

    [3]

    ZHAI Ch Zh, ZHAO X, XU L P. Laser rader detecting aerosol algorithm[J]. Laser Journal, 2015, 36(10):105-109(in Chinese).

    [4]

    WANG W, ZHONG Zh, PAN Y D. Scattered echo of surface defect in the far field of Rayleigh wave generated by laser[J]. Laser Technology, 2015, 39(2):157-165(in Chinese). http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2015AIPC.1650.1307W&link_type=EJOURNAL&db_key=PHY&high=

    [5]

    LI H M, ZUO J W, XU J, et al. Study on incoherent combining technology of pulsed laser beams[J]. Laser Technology, 2015, 39(2):237-241(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201502020.htm

    [6]

    LI D Sh, SHI W, LIU X F, et al. Progress of research for laser driven white light and analysis of its key technologies[J]. Laser Journal, 2015, 36(7):1-4(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgzz201507001

    [7]

    ZHANG Q, DENG X J, ZHANG Q X, et al. Comparative study on fractal model and spherical model of fire smoke particles for light scattering[J]. Acta Physica Sinica, 2010, 59(10):7442-7446(in Chin-ese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201010112

    [8]

    FAN M, CHEN L F, LI Sh Sh, et al. Scattering properties of non-spherical particles in the CO2 shortwave infrared band[J]. Acta Physica Sinica, 2012, 61(20):204202(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201220036

    [9]

    HE X Q, PAN D L, ZHU Q K, et al. Exact Rayleigh scattering calculation for Chinese ocean and temperature scanner[J]. Acta Opitca Sinica, 2005, 25(2):145-151(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-GXXB200502000.htm

    [10]

    MOËS N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 2015, 46(1):131-150. DOI: 10.1002-(SICI)1097-0207(19990910)46-1-131--AID-NME726-3.0.CO%3b2-J/

    [11]

    HUGHES R J T. The finite element method:linear static and dynamic finite element analysis[M]. Ceiffs, New Jersey, USA:Prentice-Hlall, 2000:222.

    [12]

    TEMPEL P, SCHMIDT A, HAASDONK B, et al. Application of the rigid finite element method to the simulation of cable-driven parallel robots[C]//Iftomm International Workshop on Computational Kinematics. Berlin, German: Springer, 2018: 198-205.

    [13]

    GUAN Zh Q, SONG Ch, GU Y X, et al. Recent advances of research on element mesh generation methods[J]. Journal of Compu-ter-Aided Design & Computer Graphics, 2003, 15(1):1-14(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JSJF200301000.htm

    [14]

    DAI H Q. The research on sphere random packing and packing structure[D]. Suzhou: Soochow University, 2011: 38-40(in Chin-ese).

    [15]

    ZHEN H L. Polarization filters based on high birefringence photonic crystal fiber filled with Au[J]. Laser Technology, 2016, 40(1):1-4(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201601001.htm

    [16]

    BOHREN C, HUFFMAN D. Absorption and scattering of light by small particles[M].New York, USA:Wiley, 1983:17-23.

    [17]

    PETOUKHOV M, FRANKE D, SHKUMATOV A, et al. New developments in the ATSAS program package for small-angle scattering data analysis[J]. Journal of Applied Crystallography, 2012, 45(2):342-350. DOI: 10.1107/S0021889812007662

    [18]

    MILTON K K. The scattering of light and other electromagnetic radiation[J]. Physical Chemistry, 1969, 22(5):620-645. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_bad6e86bbec15f9de37f25d189514cc7

    [19]

    SEMENYUK A, SVERGUN D. GNOM-a program package for small-angle scattering data processing[J]. Journal of Applied Crystallo-graphy, 2010, 24(5):537-540. DOI: 10.1107/S002188989100081X/full

    [20]

    TIAN A L, ZHANG Y G, TIAN Y J, et al. Study on light scattering characterization for subsurface defect of optical element[J].Proceedings of the SPIE, 2015, 9449:1025014. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2603815

图(5)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-05
  • 修回日期:  2017-12-07
  • 发布日期:  2018-09-24

目录

    /

    返回文章
    返回