高级检索

加权联合降维的深度特征提取与分类识别算法

冯玮, 王玉德, 张磊

冯玮, 王玉德, 张磊. 加权联合降维的深度特征提取与分类识别算法[J]. 激光技术, 2018, 42(5): 666-672. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.016
引用本文: 冯玮, 王玉德, 张磊. 加权联合降维的深度特征提取与分类识别算法[J]. 激光技术, 2018, 42(5): 666-672. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.016
FENG Wei, WANG Yude, ZHANG Lei. Deep feature extraction and classification recognition algorithm based on weighting and dimension reduction[J]. LASER TECHNOLOGY, 2018, 42(5): 666-672. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.016
Citation: FENG Wei, WANG Yude, ZHANG Lei. Deep feature extraction and classification recognition algorithm based on weighting and dimension reduction[J]. LASER TECHNOLOGY, 2018, 42(5): 666-672. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.016

加权联合降维的深度特征提取与分类识别算法

基金项目: 

国家自然科学基金资助项目 11505104

山东省高等学校科技计划资助项目 J15LN08

详细信息
    作者简介:

    冯玮(1993-), 女, 硕士研究生, 主要研究方向为图像处理与分析

    通讯作者:

    王玉德, E-mail:wyude-01@163.com

  • 中图分类号: TN911.73

Deep feature extraction and classification recognition algorithm based on weighting and dimension reduction

  • 摘要: 为了降低卷积神经网络计算的复杂度,改善特征提取过程中的过拟合现象,解决经典网络模型不能有效处理大尺寸图片的问题,采用了加权联合降维的特征融合与分类识别算法,根据两特征的识别贡献率对主成分分析法(PCA)降维处理和随机投影(RP)处理结果进行加权融合,然后将结果提供给卷积神经网络进行处理,提取图像分类的高层特征,使用欧氏距离分类器对识别对象进行分类,并进行了理论分析和实验验证。结果表明,经过加权联合降维对数据进行预处理,PCA矩阵与RP降维矩阵之比重达到6:4,识别率高达96%以上。该算法有效提高了准确率,使大尺寸图片在深度学习网络中有良好的识别效果,改善了网络的适应性。
    Abstract: In order to reduce the computational complexity of convolution neural network, improve the over-fitting phenomenon in the process of feature extraction and solve the problem that the classic network model can not effectively deal with large size images, deep feature extraction and classification recognition algorithm based on weighting and dimension reduction was adopted. Based on recognition contribution rate of two features, the results of dimensionality reduction of principal component analysis (PCA) and random projection (RP) method were fused with weighted average, then the results were provided to convolution neural network and the high-level features of image classification were extracted. Euclidean distance classifier was used to classify the recognition objects. After theoretical analysis and experimental verification, the results show that the weight ratio of PCA matrix and RP reduction matrix is 6:4, and the recognition rate is over 96% after the preprocess of data by weighting and dimension reduction. This algorithm improves the accuracy effectively, makes large size pictures having good recognition effect in deep learning network and improves the adaptability of network.
  • Figure  1.   Process of forward propagation

    Figure  2.   Design flow of module algorithm

    Figure  3.   Flow chart of classification recognition algorithm based on weighting and dimension reduction

    Figure  4.   Partial image of MIT face database

    Figure  5.   Relationship between the dimension of eigen value and recognition rate

    Figure  6.   Relationship between number of network structure and recognition rate

    Figure  7.   Relationship between weight ratio of PCA and recognition rate

    Figure  8.   Some images of BioID library

    Figure  9.   Some images of self-built library

    Table  1   Determination of the dimension of eigenvalues

    dimension 15 19 20 21 22 23 24 25 28 30
    euclidean 89.9 88.9 89.9 94.4 94.4 94.4 92.9 94.4 94.3 93.9
    cosine 90.4 90.4 90.4 94.4 94.9 94.4 93.9 93.9 94.5 96.4
    correlation 86.9 90.4 88.9 92.4 94.6 92.4 92.9 92.9 94.3 94.9
    mean 89.1 89.9 89.7 93.8 94.7 93.8 93.3 93.3 94.2 94.9
    下载: 导出CSV

    Table  2   Structure determination of deep learning

    network structure(res) 14 15 16 17 18 19 20 21 22
    euclidean 87.94 88.44 87.94 93.97 92.46 89.45 88.94 85.43 74.87
    cosine 87.44 88.94 88.94 96.48 92.96 89.45 89.95 85.93 75.88
    correlation 88.44 88.44 88.94 94.97 93.47 90.45 89.95 85.93 75.88
    mean 87.94 88.61 88.61 95.14 92.80 89.95 89.61 85.76 75.54
    下载: 导出CSV

    Table  3   Determination of feature fusion coefficient of PCA and RP

    weight ratio 0.5:0.5 0.1:0.9 0.2:0.8 0.3:0.7 0.4:0.6 0.6:0.4 0.7:0.3 0.8:0.2 0.9:0.1
    euclidean 85.43 87.44 93.79 94.47 94.47 93.97 94.47 92.96 92.46
    cosine 86.43 86.93 92.96 94.47 94.47 96.48 95.48 94.97 94.47
    correlation 84.42 86.43 92.96 94.47 94.47 94.97 94.97 94.47 93.97
    mean 85.43 86.93 93.29 94.47 94.47 95.14 94.97 94.13 93.63
    下载: 导出CSV

    Table  4   Comparison results of feature extraction method

    feature extraction method method 1 method 2 method 3 method 4
    recognition rate 86% 89% 93% 97%
    下载: 导出CSV

    Table  5   Comparison results of distance method

    classification method euclidean distance cosine distance correlation distance
    recognition rate 91.5% 93% 92%
    下载: 导出CSV

    Table  6   Contrast results of three kinds of galleries

    library name MIT library BioID library self-built library
    recognition rate 97% 90% 93%
    下载: 导出CSV
  • [1]

    SUN Y, CHEN Y H, WANG X G, et al. Deep learning face repersentation by joint identification-verification[J]. Advance in Neural Information Processing Systems, 2014, 27(12):30-60. http://arxiv.org/abs/1406.4773

    [2]

    LLORCA D F, ARROYO R, SOTELO M A. Vehicle logo recognition in traffic images HOG features and SVM[C]//2013 16th International IEEE Conference on Intelligent transportation Systems: Intelligent Transportation Systems for All M-odes(ITSC 2013).New York, USA: IEEE, 2014: 2229-2234.

    [3]

    QIAN F. Face recognition based on PCA[D]. Nanjing: Southeast University, 2003: 49-51(in Chinese).

    [4]

    XU P, FU H. Facial expression recognition based on convolutional neural network, [J]. Artificial Intelligence, 2015, 34(12):45-47(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb2015z1109

    [5]

    XU F J, WU W, GONG Y, et al. Tracking using convolutional neural networks[J]. IEEE Transcations on Neural Networks, 2010, 21(10):1610-1623. DOI: 10.1109/TNN.2010.2066286

    [6]

    BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):711-720. DOI: 10.1109/34.598228

    [7]

    ZHANG C, ZHANG Z. Improving multiview face detection with multi-task deep convolutional neural networks[C]//2014 IEEE Winter Conference on Application of Computer Vision(WACV). New York, USA: IEEE, 2014: 1036-1041.

    [8]

    KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems. City of North Miami Beach, Florida, USA: Curran Associates Inc., 2012: 1097-1105.

    [9]

    BENGIO Y. Learning deep arcjitectures for AI[J]. Foundations & Trends® in Machine Learning, 2009, 2(1):1-127.

    [10]

    LIN Y M. face recognition based on deep learning[D]. Dalian: Dalian University of Technology, 2013: 14-26(in Chinese).

    [11]

    SUN Y, WANG X G, TANG X. Deep learning face representation form predicting 10, 000 classes[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2014: 1891-1898.

    [12]

    ZHENG Y, CHEN Q Q. Deep lesrning and its new progress in object and behavior recogntion[J]. Journal of Image and Graphic, 2014, 19(2):175-184. http://www.en.cnki.com.cn/Article_en/CJFDTotal-ZGTB201402002.htm

    [13]

    CHEN Ch. Research and implementation of face detection algorithm based on depth learning[D]. Chengdu: University of Electronic Science and Technology, 2017: 49-80(in Chinese).

    [14]

    LANGKVISE M, KARLSSON L, LOU T A. Areview of unsuper vised feature learning and deep learning for time series modeling[J]. Pattern Recognition Letter, 2014, 42(5):11-24.

    [15]

    XIONG Y, ZUO X Q, HUANG L, et al. Classification of color remote sensing images based on multi-feature combination[J]. Laser Technology, 2014, 38(2):165-171(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201402005.htm

    [16]

    LIU B. Infrared face recognition method based on random projection and sparse representation[D]. Xi'an: Xi'an Electronic and Science University, 2009: 2-9(in Chinese).

    [17]

    SUN J G, MENG F Y. A weighted weighted fusion face recognition algorithm[J]. Journal of Intelligent Systems, 2015, 12(7):4-7(in Chinese). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_aaf033868e15109e45f8ad3772dda06a

    [18]

    ZHANG B, LIU J F, TANG X L. Multi-scale video text detection based on corner and stroke width verification[C]//Visual Communications and Image Processing (VCIP), 2013. New York, USA: IEEE, 2014: 1-6.

    [19]

    ZOU G F, FU G X. Multi pose face recognition based on weighted mean face[J]. Computer Application Research, 2017, 11(7):1-7(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjyyyj201810066

    [20]

    CHAN T H, MA Y. A simple deep learning baseline for image classification[J]. IEEE Transactions on Image Processing, 2015, 11(4):10-17. http://europepmc.org/abstract/MED/26340772

图(9)  /  表(6)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  2
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-23
  • 修回日期:  2017-12-27
  • 发布日期:  2018-09-24

目录

    /

    返回文章
    返回