Research of indoor positioning and illuminating systems based on visible light
-
摘要: 为了解决目前室内定位算法精度不高等问题,设计了一套兼顾照明与定位的可见光室内定位装置。首先按照国际照度标准对室内光源进行了布局,然后设计了强度调制/直接检测的可见光收发系统和以STM32为核心处理器的室内定位系统平台,最后采用多点标定相对定位方法,实现了目标点坐标及区域的标定。结果表明,在满足照明的条件下,测量误差低于10cm,部分定位区域的测量误差为3cm,甚至0cm;误差分辨率为0.1cm,相对误差小于10cm。该研究为目前室内定位技术提供了一种方案。Abstract: In order to solve the problem of low precision of indoor location algorithm, a set of visible light indoor positioning device which has illuminating function at the same time was designed. First of all, the layout of the indoor light source was arranged according to international standard of illumination. Secondly, a visible light transceiver system of intensity modulation/direct modulation (IM/DM) and an indoor positioning system platform with STM32 as core processor were designed. Finally, the calibration of target coordinates and regions was realized by using the method of multi point calibration relative positioning. The results show that, under the conditions suitable for illumination, measurement error is less than 10cm. The measurement error of partial location area is 3cm or even 0cm. Error resolution is 0.1cm, and relative error is less than 10cm. The research provides a scheme for current indoor positioning technology.
-
-
Table 1 Quantitative and regional analysis of light intensity
position ua ub uc ud area 1 691 478 772 1300 2 1160 653 605 1062 B 3 1087 659 291 626 4 752 701 1145 1225 E 5 1215 1165 1185 1251 A 6 1221 1162 707 771 C 7 470 700 1305 770 8 831 1170 1324 786 D 9 944 1144 901 413 Table 2 Light intensity difference and sensitivity analysis
position ubc uad uba ucd uh(i) uv(i) A(i) B(i) Pi Wi 1 294 609 213 528 451.5 370.5 423.5 312.5 2 48 98 507 457 73 482 45 424 10.6 3 368 461 428 335 414.5 381.5 386.5 323.5 4 444 473 51 80 458.5 65.5 430.5 7.5 10.763 5 20 36 50 66 28 58 0 0 6 455 450 59 64 452.5 61.5 424.5 3.5 10.613 7 605 300 230 535 452.5 382.5 424.5 324.5 8 154 45 339 538 99.5 438.5 71.5 380.5 9.513 9 243 531 200 488 387 344 359 286 Table 3 Comparison table of positioning error
position x/cm y/cm xx/cm yy/cm Δx/cm Δy/cm e/cm 1 -40 40 -42 31 2 9 9.21954446 2 0 40 4 42 4 2 4.47213595 3 40 40 38 32 2 8 8.24621125 4 -40 0 -43 1 3 1 3.16227766 5 0 0 2 5 2 5 5.38516481 6 40 0 42 1 2 1 2.23606798 7 -40 -40 -42 -32 2 8 8.24621125 8 0 -40 7 -38 7 2 7.28010989 9 40 -40 36 -28 4 12 12.6491106 -
[1] WU N, WANG X D, HU Q Q, et al. High precision indoor visible light positioning method based on multi-LED[J].Journal of Electronics & Information Technology, 2015, 37(3):727-732(in Chinese).
[2] QIN X, DAI H. Design and analysis of indoor positioning system based on LED light[J]. Journal of Hangzhou Dianzi University, 2017, 37(4):6-9(in Chinese).
[3] DONG W J, WANG X D, WU N, et al. Implementation of indoor visible light positioning system based on LED intensity[J]. Optical Communication Technology, 2017, 41(3):12-15(in Chinese).
[4] LIU R L. Research on indoor positioning technology in visible light communication[D]. Beijing: Beijing University of Posts and Telecommunications, 2013: 1-49(in Chinese).
[5] CHEN X H. Simulation and experimental study on the location method of indoor visible multi-parameter location fingerprint library[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2015: 1-71(in Chinese).
[6] GAO Y L, SHI A C. Implementation of indoor precision positioning algorithm based on white light LED[J]. Semiconductor Optoelectronics, 2015, 36(1):141-144(in Chinese).
[7] LU H, CUI W J, BAI B, et al. Visible light localization algorithm with multiple observations constraints[J]. Journal of Xidian University, 2017, 44(4):156-161(in Chinese).
[8] SHEN R, ZHANG J. Indoor location method based on visible light communication[J]. Journal of Information Engineering University, 2014, 15(1):41-45(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gtxyj201803019
[9] PANT K, ARMSTRONG J. Indoor localization using white LEDs[J]. Electronics Letters, 2012, 48(4):228-230. DOI: 10.1049/el.2011.3759
[10] SHEN Ch H, BAI R L, LI X. Planar positioning compensation method of vision-guided assembly robot[J]. Laser Technology, 2017, 41(1):79-84(in Chinese).
[11] SUN L H, ZHAO X Y, GAO L T, et al. Measurement of laser spot center position based on sub-pixel positioning technique[J].Laser Technology, 2017, 41(4):511-514(in Chinese).
[12] ZENG M, GONG Ch, XU Zh Y. An improved visible light positioning system based on RSS[J].Journal of University of Science and Technology of China, 2017, 47(2):188-194. http://d.old.wanfangdata.com.cn/Periodical/zgkxjsdxxb201702009
[13] HE Sh Y. Indoor visible light communication system of key technologies[D]. Harbin: Harbin Institute of Technology, 2013: 1-124(in Chinese).
[14] GUAN W P, WEN Sh Sh, HU X X, et al. Research on visible light communication system based on dual modulation technology[J]. Optoelectronics·Laser, 2015, 26(11):2125-2132(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-GDZJ201511013.htm
[15] DING D Q, KE X Zh. Visible light communication and its key technologies[J]. Semiconductor Optoelectronics, 2006, 27(2):114-117(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dzzl201005008
[16] YUAN Q. International commission on illumination lighting standards-indoor workplace lighting[J]. Lighting Engineering, 2002, 13(4):55-60(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/1420326X9200100509
[17] GAO Q, YU Y X, YU Zh Zh, et al. An indoor visible difference correction positioning algorithm based on RSS[J]. Semiconductor Optoelectronics, 2016, 37(4):536-539(in Chinese).
[18] LU H B, LIANG J Q.Channel model of visible light indoor positioning system and its simulation analysis[J]. Chinese Journal of Optical Instrument, 2017, 39(2):64-69(in Chinese).
[19] ZHOU Zh Sh. Based on convex optimization indoor visible light communication lamp arrangement[D].Nanjing: Nanjing University of Posts and Telecommunications, 2016: 1-60(in Chinese).
[20] CHEN H Y, LIU W, LI L. Effects of relative phase noise on performance of coherent optical communication system[J]. Laser Technology, 2016, 40(1):94-98(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201601022.htm
[21] HU J B, LI M P. Design of novel tunable semiconductor laser in optical communication system[J]. Laser Technology, 2016, 40(2):280-283(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201602027.htm
[22] HUANG Zh H, WANG Y L, LI G F, et al. Adaptive frequency domain equalization algorithm in less-mode optical fiber communication system[J]. Laser Technology, 2017, 41(1):124-128(in Chinese).
-
期刊类型引用(11)
1. 孟祥艳,张欣,张峰,赵黎,李帅. 融合迁移特征学习的生物启发网络用于可见光成像室内位置感知方法. 中国激光. 2023(10): 176-183 . 百度学术
2. 赵黎,刘海涛,陈俊波. 基于采用天牛须搜索算法优化神经网络的可见光室内定位方法. 光通信技术. 2022(02): 1-7 . 百度学术
3. 张慧颖,王凯,于海越,牟昊. 基于自适应Levy飞行的黄金正弦可见光定位研究. 激光技术. 2022(04): 519-524 . 本站查看
4. 赵黎,韩中达,张峰. 基于神经网络的可见光室内立体定位研究. 中国激光. 2021(07): 145-154 . 百度学术
5. 张雨桐,赵黎,张峰. 基于小波变换的可见光OFDM通信系统性能优化. 激光技术. 2020(02): 261-265 . 本站查看
6. 宋素真,桂林,杨晨,郑艺璇,陈璟,朱玉绚. 可见光通信应用于安全支付有效区域的研究. 上海第二工业大学学报. 2020(03): 207-212 . 百度学术
7. 陈立胜,于丽娜. 基于虚拟光学的室内三维空间视觉合理性设计. 激光杂志. 2020(11): 183-187 . 百度学术
8. 陈怡然,廖宁. 基于激光图像处理技术的目标定位系统. 激光杂志. 2019(08): 77-80 . 百度学术
9. 朱瑞晨,曹宇彤,索朝举,刘洋洋,刘伟伟. 基于LED可见光技术的室内车辆定位系统设计. 电脑知识与技术. 2019(22): 228-230 . 百度学术
10. 左肖,邵建华,沈宏杰,安爽. 自然环境光下的室内可见光定位系统. 激光杂志. 2019(11): 7-11 . 百度学术
11. 杨康,赵黎. 基于VLC和PLC的智慧照明系统. 激光杂志. 2019(12): 72-75 . 百度学术
其他类型引用(8)