Line-width measurement of DFB laser based on frequency shift delay self-heterodyning method
-
摘要: 为了测量分布反馈(DFB)单模半导体激光器线宽,采用一种新颖的基于马赫-曾德尔干涉结构的光纤自外差测量方案,设计了一套全光纤延时自外差法测量系统,并进行了理论分析。在此基础上搭建了延时光纤长度分别为900m,3000m和6000m的窄带线宽测量系统,对实验室一台中心波长为1550nm、标称线宽值为800kHz的DFB单模半导体激光器光源进行了测试,测得激光器线宽值分别为951.566kHz,832.471kHz和802.221kHz,并对所设计的方案进行了模拟仿真验证。结果表明,与模拟仿真结果作对比,延时光纤长度为6000m时的窄带线宽测量系统最优,其误差在3%之内,证明了所用自外差干涉原理的合理性和准确性。全光纤移频延时自外差法对测量DFB激光器线宽具有优越性和重要的实用价值。Abstract: In order to measure the line-width of distributed feedback(DFB) diode single mode semiconductor laser, novel optical fiber self-heterodyne measurement scheme based on Mach-Zehnder interference structure was adopted and a set of all fiber time-delay self-heterodyne measurement system was designed. After theoretical analysis, narrow band line-width measurement system with time-delay fiber length of 900m, 3000m and 6000m was set up. A DFB single mode laser source with center wavelength of 1550nm and nominal line-width of 800kHz was tested. The measured line-width values of laser were 951.566kHz, 832.471kHz and 802.221kHz respectively. The designed scheme is verified by simulation. The results show that, compared with the simulation results, narrowband line-width measurement system with the length of 6000m is optimal, and its error is within 3%, which proves the rationality and accuracy of self-heterodyne interference principle. All fiber frequency shift delay self-heterodyne method has advantages and practical value for measuring the line-width of DFB lasers.
-
Keywords:
- laser technique /
- line-width measurement /
- delay self-heterodyne /
- simulation
-
-
Table 1 Linewidth measurement of light source with linewidth 800kHz at different delay fiber lengths
L/m 300 600 900 1200 1500 ν′/kHz 1414.325 1136.122 951.566 926.318 903.231 L/m 1800 2100 2400 2700 3000 ν′/kHz 883.316 868.719 856.506 844.209 832.471 L/m 3300 3600 3900 4200 4500 ν′/kHz 828.440 820.274 817.669 812.663 809.812 L/m 4800 5100 5400 5700 6000 ν′/kHz 806.375 805.228 804.879 803.849 802.221 -
[1] WANG H X, CHEN J D, CHANG T Y, et al. Research of modulation characteristics of distributed feedback laser[J]. Laser Technology, 2017, 41(6):836-840(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201706014.htm
[2] WEI Zh P. Narrow linewidth laser spectral width measurement based on time delay self-heterodyne method[J]. Optics and Optoelectronics Technology, 2015, 13(3):38-40(in Chinese).
[3] JIA Y D, OU P, YANG Y H, et al. Short fiber delay self heterodyne method to measure linewidth of narrow linewidth laser[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(5):568-571(in Chinese).
[4] PENG J X. Research on narrow linewidth laser linewidth measurement system[D].Beijing: Beijing University of Posts and Telecommunications, 2015: 2-3(in Chinese).
[5] OKOSHI T, KIKUCHI K, NAKAYAMA A. Novel method for high resolution measurement of laser output spectrum[J]. Electron Lett-ers, 1980, 16(16):630-631. DOI: 10.1049/el:19800437
[6] WU T, HUI R Q, ZHANG J P, et al. Full-fiber dual-window high-resolution delay self-heterodyne measurement system[J]. Journal of Beijing University of Posts and Telecommunications, 1990, 13(2):1-6(in Chinese).
[7] XIE D H, DENG D P, GUO L, et al. Narrow line width laser line width measurement method[J]. Laser & Optoelectronics Progress, 2013, 50(1):10006(in Chinese). http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC029715747/
[8] HU J B, LI M P. Design of novel tunable semiconductor lasers in optical fiber communication systems[J]. Laser Technology, 2016, 40(2):280-283(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201602027
[9] FENG S Ch. Multiwavelength single longitudinal mode fiber laser[D]. Beijing: Beijing Jiaotong University, 2010: 111-116(in Chin-ese).
[10] HAN M, WANG A. Analysis of los-compensated recirculating delayed self-heterodyne interferometer for laser linewidth measurement[J]. Applied Physics, 2005, B81(23):53-58. DOI: 10.1007/s00340-005-1871-9
[11] YU B L, YANG J R, YANG Y H, et al. Zero-beat measurement of narrow linewidth laser[J]. Chinese Journal of Lasers, 2001, 28(4):351-354(in Chinese).
[12] DONG Y B. Study of related quantumeffect induced by electromagnetic induced coherent medium[D]. Taiyuan: Shanxi University, 2006: 39-45(in Chinese).
[13] SUN X H. Single longitudinal mode fiber laser and its linewidth measurement[D]. Beijing: Beijing Jiaotong University, 2008: 40-52(in Chinese).
[14] CAO Ch Y, YAO Q, RAO W, et al. Measurement of linewidth of unbalanced fiber interferometer with narrow linewidth laser[J]. Chinese Journal of Lasers, 2011, 38(5):508005(in Chinese). DOI: 10.3788/CJL
[15] ZHOU W, CHONG K M, GUO H. Linewidth measurement of Littrow structure semiconductor laser with improved methods[J]. Physics Letters, 2008, A372(23):4327-4332. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2029e1ff971c96f6c2504e0f8aa150fd
[16] XIAO H J, WANG X, MA Y, et al. Linewidth measurement of na-rrow-linewidth fiber laser based on DSHI[J].Opto-Electronics Engineering, 2010, 37(8):57-61(in Chinese).
[17] LIU J W, DU Zh H, GAO D Y, et al. Research on the dynamic characteristics of semiconductor laser tuning[J]. Laser Journal, 2012, 32(6):6-10(in Chinese).
[18] GAO D Y. Research and instrument development of quasi-continuous tuning laser absorption spectroscopy[D]. Tianjin: Tianjin University, 2011: 21-25(in Chinese).