Loading [MathJax]/jax/output/SVG/jax.js
高级检索

脉冲式激光选区熔化成形搭接率的研究

祁斌, 刘玉德, 石文天, 王硕, 杨锦, 张飞飞

祁斌, 刘玉德, 石文天, 王硕, 杨锦, 张飞飞. 脉冲式激光选区熔化成形搭接率的研究[J]. 激光技术, 2018, 42(3): 311-317. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.005
引用本文: 祁斌, 刘玉德, 石文天, 王硕, 杨锦, 张飞飞. 脉冲式激光选区熔化成形搭接率的研究[J]. 激光技术, 2018, 42(3): 311-317. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.005
QI Bin, LIU Yude, SHI Wentian, WANG Shuo, YANG Jin, ZHANG Feifei. Study on overlap ratio of pulse laser selective melting forming[J]. LASER TECHNOLOGY, 2018, 42(3): 311-317. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.005
Citation: QI Bin, LIU Yude, SHI Wentian, WANG Shuo, YANG Jin, ZHANG Feifei. Study on overlap ratio of pulse laser selective melting forming[J]. LASER TECHNOLOGY, 2018, 42(3): 311-317. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.005

脉冲式激光选区熔化成形搭接率的研究

基金项目: 

国家自然科学基金资助项目 51505006

2016学位与研究生教育一般资助项目 11000101010

详细信息
    作者简介:

    祁斌(1992-), 男, 硕士研究生, 主要研究方向为激光快速成形

    通讯作者:

    刘玉德, E-mail:liu_yude@163.com

  • 中图分类号: TG665

Study on overlap ratio of pulse laser selective melting forming

  • 摘要: 为了探究脉冲式激光选区熔化成形过程中的搭接率与搭接特性,采用了弓形与抛物线形搭接理论模型,并设计了单熔点、单熔道和多层块体的成形实验,获得了不同条件下较优的搭接率。结果表明,单熔点熔宽随曝光时间增大而增大;单熔道实验中,曝光时间为40μs~60μs时,单熔点间较合理的搭接率约为30%;曝光时间为80μs时,搭接率约为50%;曝光时间为100μs~120μs时,搭接率约为60%;多层块体实验中,单熔道间的搭接率为50%时,块体表面形貌较好;通过对块体进行致密度、缺陷、微观组织和拉伸性能分析可知,当功率200W、层厚50μm、曝光时间100μs、点距65μm、线间距77μm时,可得到致密度最高为99.99%的样件。该研究对认识脉冲式激光选区熔化成形过程中的搭接特性和搭接率选取是有帮助的。
    Abstract: In order to study overlap ratio and overlap characteristics during pulse laser selective melting forming process, the overlap theoretical models of bow and parabola were adopted, and the forming experiments of single melting point, single cladding and multi-layer block were designed under different conditions to obtain the optimal overlap ratio. The results show that the width of single melting point increases with the increase of exposure time. The optimal overlap ratio between two melting tracks is 30% in the single cladding experiment when exposure time is 40μs~60μs. The overlap ratio is 50% when exposure time is 80μs. The overlap ratio is 60%, when exposure time is 100μs~120μs. The surface morphology of block is slat in the multi-layer block experiment when overlap ratio between two melting tracks is 50%. After the analysis of block density, defect, microstructure and tensile properties, sample density is up to 99.99%, when laser power is 200W, layer thickness is 50μm, exposure time is 100μs, point distance is 65μm and line spacing is 77μm. The research is helpful for understanding overlap characteristics and overlap ratio selection in pulse laser selective melting.
  • 获得高功率优质的超短脉冲光源一直是国内外光纤光学研究的热点问题。2000年, FERMANN等人[1]首次在理论和实验上证明了带有增益的光纤放大器能够产生自相似脉冲。所谓自相似脉冲是指产生于色散渐减光纤(dispersion decreasing fiber, DDF)或光纤放大器正色散区的一类啁啾近乎线性、时域波形类似抛物线形状的渐进性脉冲。自相似脉冲具有许多优点[2-3]:传输特性只与入射脉冲的能量和和光纤参量有关,与入射脉冲形状无关;因其产生的啁啾具有很强的线性,所以高功率传输时有抵御光波分裂的能力,能显著提升脉冲压缩的质量,故如何利用自相似脉冲来产生超短脉冲输出便成为了研究的热点[4]。自相似脉冲的压缩方法主要采用啁啾补偿技术,常利用色散补偿光纤(dispersion compensation fiber, DCF)[5-6]、啁啾光纤光栅[7]等色散补偿器件或采用预啁啾处理[8]等方法来进行啁啾补偿,其中DCF因补偿效果好、技术相对成熟且使用方便得到了广泛的应用。近年来,绝大部分的研究都主要集中在如何获取高线性啁啾的脉冲进行后期的压缩补偿,而对于补偿光纤的设计却鲜有报道。因此,本文中基于啁啾补偿技术研究自相似脉冲啁啾补偿光纤的设计,采用色散渐增光纤进行自相似脉冲的啁啾补偿。首先基于DDF产生具有强线性啁啾的自相似脉冲,进而基于啁啾特性研究自相似脉冲的后续压缩补偿问题,啁啾补偿光纤的设计采用普通色散补偿光纤以及色散渐增光纤,探讨了两种类型的压缩光纤对自相似脉冲的线性啁啾补偿效果以及高功率压缩脉冲输出性能的影响。

    当忽略高阶色散和非线性效应时,光脉冲在DDF中的传输可由薛定谔方程[9-10]表示:

    iA(z,T)z=iα2A(z,T)+β22D(z)2A(z,T)T2γ|A(z,T)|2A(z,T) (1)

    式中,A(z, T)为脉冲的包络的慢变振幅,T是随脉冲以群速度移动的参考系中时间的量度,z为传输的距离,α为光纤的损耗系数,β2z=0时的2阶群速度色散(group velocity dispersion, GVD)参量,D(z)为色散变化参量,γ为非线性系数。当忽略光纤的损耗时,该方程便演变为以下的非线性薛定谔方程:

    iA(z,T)z=β22D(z)2A(z,T)T2γ|A(z,T)|2A(z,T) (2)

    此时脉冲在DDF中的演化主要受2阶色散和低阶非线性影响。通过傅里叶变换,将(2)式改写为以下形式:

    A(z,T)z=(ˆD+ˆN)A(z,T) (3)

    式中, ˆD=β22D(z)2T2 ,表示2阶色散作用, ˆN=γ|A(z,T)|2A(z,T) ,表示非线性作用。由分步傅里叶方法可知,当光场通过一小段距离h时,色散和非线性效应可以分别作用。故每经过一小段距离h后的光脉冲的慢变振幅A(z+h, T)可由下式表示:

    A(z+h,T)=exp(hˆD)exp(hˆN)A(z,T) (4)

    本文中,DDF 2阶色散随着光纤长度z以双曲型变化,即 D(z)=11+Hz ,其中H为增益系数,归一化D(0)=1,采用无啁啾的高斯脉冲作为输入脉冲,T0为初始脉宽, 输入脉冲表达式为:

    A(0,T)=exp(T22T20) (5)

    初始输入高斯脉冲的半峰全宽(full width at half maximum, FWHM)TFWHM=1ps,中心波长为1550nm,当z=0时,2阶色散系数β2=1.36ps2/km,非线性系数γ=3.5(W·km)-1,增益系数H=22km-1。通过计算色散长度Ld=1.0608km,非线性长度LNL=0.0068km,实验中设置光纤长度为4倍的色散长度Ld,此时由于光纤长度远大于非线性长度,GVD效应会对光脉冲传输起主要作用。通过前面的分步傅里叶法,可得到脉冲在DDF中不同位置的演化的数值仿真值。图 1图 2中分别给出脉冲的时域演化趋势和输出脉冲的啁啾曲线。

    Figure 1. Schematic diagram of pulse evolution in DDF
    Figure  1.  Schematic diagram of pulse evolution in DDF
    Figure 2. Schematic diagram of output pulse chirp
    Figure  2.  Schematic diagram of output pulse chirp

    图 1中可以看到,随着传输距离的增大,时域内脉冲不断进行展宽。其展宽的原因在传输前期主要来自于2阶GVD效应,但随着2阶GVD效应的减小,非线性效应(self-phase modulation, SPM)会逐渐变强,当GVD和SPM满足一定关系[11]时, 就会产生具有线性啁啾的自相似脉冲,因此需要合理选择DDF的长度,保证光脉冲完成自相似演化。当光脉冲经过4倍的Ld之后,可以看到,输出脉冲的啁啾具有较大的线性范围,此时SPM效应所产生的非线性啁啾在整个脉冲范围内几乎被正常GVD效应线性化,可以认为此时脉冲已经完成了自相似演化。

    由于自相似脉冲在传输的过程中其GVD效应远大于SPM效应,因此对演化完成后的自相似脉冲进行色散补偿后,便可以对自相似脉冲进行压缩。对色散进行补偿[11-13]的做法是在DDF后引入一段带有相反色散的光纤。对于引入相反色散光纤进行压缩脉冲可以这样理解,对于无初始啁啾的高斯脉冲在经过适当距离的DDF后,产生具有线性啁啾的自相似脉冲后在进入反常色散的光纤时,可以看作是带有啁啾的高斯脉冲,其入射场可表示为:

    U(0,T)=exp[(1+iC)T22T20] (6)

    式中, C为线性啁啾参量,由于高斯脉冲经过了带有正常色散DDF,所以自相似脉冲感应的是正啁啾,因此啁啾参量C>0。当不考虑非线性效应时,脉冲在具有线性色散介质光纤时满足以下线性微分方程:

    iU(z,T)z=β222U(z,T)T2 (7)

    当输入脉冲为带啁啾的高斯脉冲时,可求得上述方程的解为:

    U(z,T)=T0[T20iβ2z(1+iC)]1/2×exp{(1+iC)T22[T20iβ2z(1+iC)]} (8)

    通过计算得到在传输距离为z时的脉冲宽度T1与初始脉冲脉宽T0存在以下关系:

    T1=[(1+Cβ2zT20)2+(β2zT20)2]1/2T0 (9)

    从(9)式可以看出,若初始脉冲啁啾与光纤的2阶色散参量符号相反时,在传输适当的距离内啁啾高斯脉冲会被压缩,且存在一个最窄的压缩脉宽T1,与光纤的2阶色散参量和长度有关。同样对于带有线性正啁啾的自相似脉冲也是一样,通过引入一段带有反常色散的光纤,在经过适当的距离后,就能够对自相似脉冲进行压缩。

    理论上,只要引入一段带有反常色散的光纤都能实现脉冲压缩的目的,因此本文中分别引入带有反常色散的色散补偿光纤(2阶色散为常量)和带有反常色散的线性渐增光纤来对自相似脉冲进行压缩,以探究不同类型的反常色散光纤对自相似脉冲的压缩影响。取色散补偿光纤的2阶色散β2=-1.36(ps2/km),非线性系数γ=1(W·km)-1;色散线性渐增光纤2阶色散β2(z)=β2(0)(1+pz),其中初始2阶色散系数β2(0)=-1.36(ps2/km),色散渐增系数p取为1km-1,非线性系数与色散补偿光纤保持一致。通过数值仿真可以得到自相似脉冲经过各段反常色散光纤后的脉冲压缩情况。图 3图 4分别为自相似脉冲经过普通色散补偿光纤和色散线性渐增光纤的压缩示意图,图 5为自相似脉冲经过色散补偿和色散线性渐增光纤脉冲后的压缩对比图。

    Figure 3. Schematic diagram of pulse compression of ordinary dispersion compensation fiber
    Figure  3.  Schematic diagram of pulse compression of ordinary dispersion compensation fiber
    Figure 4. Schematic diagram of pulse compression for linearly increasing dispersion fiber
    Figure  4.  Schematic diagram of pulse compression for linearly increasing dispersion fiber
    Figure 5. Partial enlarged view of pulse compression of dispersion compensation fiber and linearly increasing dispersion fiber
    Figure  5.  Partial enlarged view of pulse compression of dispersion compensation fiber and linearly increasing dispersion fiber

    通过数值仿真,当获得最佳超短脉冲输出时,色散补偿光纤长度为97.8m,超短输出脉冲半峰全宽TFWHM=52.6fs,输出脉冲峰值功率为684.5W;而色散线性渐增光纤长度为93.0m,超短输出脉冲半峰全宽TFWHM=53.8fs,输出脉冲峰值功率为688.2W。可以看到, 当色散渐增系数p=1km-1时,色散线性渐增光纤与色散补偿光纤一样能将自相似脉冲压缩至50fs量级,但色散线性渐增光纤与色散补偿光纤所产生的脉冲基座略有不同,色散线性渐增光纤的基座波动相对较小,且色散线性渐增光纤的光纤长度也小于色散补偿光纤。因此,相比较于普通色散补偿光纤,色散线性渐增光纤能获取较高质量的自相似脉冲压缩。

    为了进一步探究色散渐增系数p对压缩质量的影响,在保持其它参量不变的情况下改变p值,观察脉冲在色散线性渐增光纤中的演化情况。图 6p为5km-1和10km-1时的最佳超短脉冲输出示意图。

    Figure 6. Schematic diagram of pulse compression of fibers with linearly increasing dispersion at p=5km-1, 10km-1
    Figure  6.  Schematic diagram of pulse compression of fibers with linearly increasing dispersion at p=5km-1, 10km-1

    表 1为自相似脉冲经过不同p值的色散线性渐增光纤后输出最短脉冲的数值模拟值。通过数值仿真可知,当p=5km-1时,压缩至最短脉冲所需的光纤长度缩短为81.0m,最短脉冲半峰全宽TFWHM=58.0fs; 当p=10km-1时,所需的光纤长度缩短为74.2m,最短脉冲半峰全宽TFWHM=61.8fs。由以上结果可以得出:当保持光纤其它参量不变时,增大色散线性渐增系数p可以明显缩短超短脉冲输出时的补偿光纤长度,有利于减小脉冲在传输过程中产生的损耗,从而有效提高自相似脉冲的压缩质量,但随着色散渐增系数p迅速提高,其输出脉冲的峰值功率和脉宽也会略微有所降低。最终在p=10km-1时获得功率为630.6W、脉宽为61.8fs的超短脉冲输出。

    Table  1.  Numerical simulation results of fibers with linearly increasing dispersion
    p=1km-1 p=5km-1 p=10km-1
    optimal compensation fiber length/m 93.0 81.0 74.2
    full width at half maximum of ultrashort pulse output/fs 53.8 58.0 61.8
    peak power of output pulse/W 688.2 655.1 630.6
    下载: 导出CSV 
    | 显示表格

    为了验证其它类型的色散渐增光纤是否也有类似的规律,又引入了色散指数渐增光纤来压缩自相似脉冲。色散指数渐增光纤的2阶色散可以表示为:β2(z)=β2(0)exp(pz),其中初始2阶色散系数β2(0)=-1.36(ps2/km),与色散线性渐增光纤一样分别取p为1km-1,5km-1,10km-1,非线性系数与上述光纤保持一致,通过数值仿真得出自相似脉冲在色散指数渐增光纤中的演化结果。图 7p分别为1km-1,5km-1,10km-1时色散指数渐增光纤的脉冲压缩示意图。

    Figure 7. Schematic diagram of pulse compression of fiber with increasing dispersion index at p=1km-1, 5km-1, 10km-1
    Figure  7.  Schematic diagram of pulse compression of fiber with increasing dispersion index at p=1km-1, 5km-1, 10km-1

    表 2为自相似脉冲经过不同p值的色散指数渐增光纤后输出最短脉冲的数值模拟值。当色散渐增系数p=1km-1时,压缩至最短脉冲所需的色散指数渐增光纤长度为92.5m,最短脉冲半峰全宽TFWHM=54.2fs,输出脉冲峰值功率为674.2W;当色散渐增系数p=5km-1时,压缩至最短脉冲所需的光纤长度为82.5m,最短脉冲半峰全宽TFWHM=59.4fs,输出脉冲峰值功率为643.3W;当色散渐增系数p=10km-1时,压缩至最短脉冲所需的光纤长度缩短为70.3m,最短脉冲半峰全宽TFWHM=64.4fs,输出脉冲峰值功率为604.4W。

    Table  2.  Numerical simulation results of fibers with increasing dispersion index
    p=1km-1 p=5km-1 p=10km-1
    optimal compensation fiber length/m 92.5 82.5 70.3
    full width at half maximum of ultrashort pulse output/fs 54.2 59.4 64.4
    peak power of output pulse/W 674.2 643.3 604.4
    下载: 导出CSV 
    | 显示表格

    上述结果与利用色散线性渐增光纤压缩脉冲得出的结论不谋而合,因此可以认为: 当保持其它参量不变时,增大色散渐增系数,能有效地缩短脉冲压缩所需的补偿光纤长度,在实际的光纤线路中,缩短补偿光纤长度就意味着能避免更多的损耗,从而提高脉冲的压缩质量,得到高质量的超短脉冲输出,但随着色散渐增系数的迅速增加,输出功率和脉宽也会略微减小,因此需要合理地选择色散渐增系数,在保证脉冲压缩质量的前提下缩短压缩光纤的长度。同时, 在比较指数型色散渐增光纤和线性型色散渐增光纤时可以发现,当色散渐增系数相等时,线性型色散渐增光纤的压缩效果要比指数型色散渐增光纤的压缩效果好。

    利用DDF产生了具有线性啁啾的自相似脉冲,采用啁啾补偿技术进行了自相似脉冲压缩。输入半峰全宽TFWHM=1ps、峰值功率为42W的高斯脉冲,经过DDF后形成带有线性啁啾的自相似脉冲,随后又通过长度为97.8m的普通色散补偿光纤后得到半峰全宽TFWHM=52.6fs、峰值功率为684.5W的超短脉冲输出。在此基础上,讨论了色散线性渐增光纤和色散指数渐增光纤对压缩脉冲的影响,当自相似脉冲通过色散渐增系数p=1km-1、长度为93.0m的色散线性渐增光纤后得到半峰全宽TFWHM=53.8fs、峰值功率为688.2W的超短脉冲输出;通过色散渐增系数p=5km-1、长度为81.0m的色散线性渐增光纤后得到半峰全宽TFWHM=58.0fs、峰值功率为655.1W的超短脉冲输出;通过色散渐增系数p=10km-1、长度为74.2m的色散线性渐增光纤后得到半峰全宽TFWHM=61.8fs、峰值功率为630.6W的超短脉冲输出。当自相似脉冲通过色散渐增系数p=1km-1、长度为92.5m的色散指数渐增光纤后,得到半峰全宽TFWHM=54.2fs、峰值功率为674.2W的超短脉冲输出;通过色散渐增系数p=5km-1、长度为82.5m的色散指数渐增光纤后,得到半峰全宽TFWHM=59.4fs、峰值功率为643.3W的超短脉冲输出;通过色散渐增系数p=10km-1、长度为70.3m的色散指数渐增光纤后,得到半峰全宽TFWHM=64.4fs、峰值功率为604.4W的超短脉冲输出。结果表明, 利用色散渐增光纤作为啁啾补偿光纤能明显缩短补偿光纤的长度,在保证其它参量不变的情况下,增大色散渐增系数会进一步缩短脉冲压缩所需的光纤长度,但随着色散渐增系数的迅速增加,输出功率和脉宽也会略微减小。

  • Figure  1.   a—316L powder profile b—particle size distribution

    Figure  2.   AM400 equipment of British Renishaw Company

    Figure  3.   Pulse laser forming process and variable parameters

    Figure  4.   Overlapping theoretical model

    a—diagram of bow model b—diagram of parabola model c—diagram of overlap model

    Figure  5.   Schematic diagram of single melting point

    Figure  6.   a—multilayer block diagram b—tensile specimen c—dimension of tensile specimen

    Figure  7.   Surface morphology of single cladding under different point distances and exposure time

    Figure  8.   Width of single cladding under different exposure time and point distances

    Figure  9.   Scanning electron microscope figure of multilayer blocksurface under different scanning intervals

    a—s=W/5 b—s=W/3 c—s=W/2 d—s=2W/3 e—s=4W/5

    Figure  10.   Density of multilayer block under different scanning intervals

    Figure  11.   Cross section morphology of multilayer blocks under different scanning intervals

    a—s=W/5 b—s=W/3 c—s=W/2 d—s=2W/3 e—s=4W/5

    Figure  12.   Microstructure of multilayer block at scanning intervals of s=W/2

    Figure  13.   Tensile mechanical properties of multilayer specimens under different scanning intervals (W/5=31μm, W/3=51μm, W/2=77μm, 2W/3=103μm, 4W/5=138μm)

    Table  1   Content of 316L stainless steel elements

    element Cr Ni Mo Mn Si N O P C S Fe
    mass fraction 0.16~0.18 0.10~0.14 0.02~0.03 0.02 0.01 0.001 0.001 0.00045 0.0003 0.0003 balance
    下载: 导出CSV

    Table  2   Design of single cladding experiment under different exposure time and point distances

    exposure time/μs point distance/μm
    Ws/5 Ws/3 Ws/2 2Ws/3 4Ws/5
    40 16 26 39 52 62
    60 16 27 41 55 66
    80 18 30 45 60 72
    100 20 33 49 65 78
    120 21 35 52 69 83
    下载: 导出CSV

    Table  3   Width measurement of single melting point under different exposure time

    exposure time/μs width of melting point Ws/μm
    40 78
    60 82
    80 90
    100 98
    120 104
    下载: 导出CSV
  • [1]

    STOPYRA W, KYRZAC J, GRUBER K, et al.Influence of laser power on the penetration depth and geometry of scanning tracks in se-lective laser melting[J]. Proceedings of the SPIE, 2016, 10159:101590R. DOI: 10.1117/12.2262079

    [2]

    ZHANG D Y, FENG Q H, LI Zh B, et al. Application of laser direct manufacturing of metallic part in aerospace industry[J].Aeronautical Manufacturing Technology, 2011(9):38-41(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkgyjs201109004

    [3]

    DEMIR A G, COLOMBO P, PREVITALI B. From pulsed to continuous wave emission in SLM with contemporary fiber laser sources:effect of temporal and spatial pulse overlap in part quality[J].International Journal of Advanced Manufacturing Technology, 2017, 91(5/8):2701-2714. DOI: 10.1007/s00170-016-9948-7

    [4]

    LIU R Ch, YANG Y Q, WANG D. Research of upper surface roughness of metal parts fabricatedby selective laser melting[J]. Laser Technology, 2013, 37(4):425-430(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201304004.htm

    [5]

    CHERRY J A, DAVIES H M, MEHMOOD S, et al.Investigation into the effect of process parameterson microstructural and physical properties of 316L stainless steel parts by selective laser melting[J].International Journal of Advanced Manufacturing Technology, 2015, 76(5/8):869-879. DOI: 10.1007/s00170-014-6297-2

    [6]

    WANG D, YANG Y Q, SU X B, et al. Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM[J]. International Journal of Advanced Manufacturing Technology, 2012, 58(9/12):1189-1199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8f60e398a280ded72d1a8ca6ec7cd5c5

    [7]

    WANG D, WU Sh B, MAI Sh Zh, et al.Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties[J].Materials & Design, 2017, 117:121-130. http://www.sciencedirect.com/science/article/pii/S0264127516315866

    [8]

    GU D D, SHEN Y F. Balling phenomena in direct laser sintering of stainless steel powder:Metallurgical mechanisms and control methods[J]. Materials & Design, 2009, 30(8):2903-2910. http://www.sciencedirect.com/science/article/pii/S0261306909000181

    [9]

    ZHANG G, WANG J H, ZHANG H. Research progress of balling phenomena in selective laser melting[J].Foundry Technology, 2017, 38(2):262-265(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-ZZJS201702002.htm

    [10]

    WANG J H, BAI P K.Study on process parameters on surface quality of Ti6Al4V by selective laser melting[J]. Hot Working Technology, 2013, 42(15):13-15(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rjggy201315004

    [11]

    ZHOU X, LIU W. Melting and solidifying behavior in single layer selective laser of pure tungsten powder[J]. Chinese Journal of Lasers, 2016, 43(5):0503006(in Chinese). DOI: 10.3788/CJL

    [12]

    SUN Zh J, TAN X P, TOR Sh B, et al.Selective laser melting of stainless steel 316L with low porosity and high build rates[J].Materials & Design, 2016, 104:197-204. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=81b7d4283d5c821d0fd8e2ebd817986b

    [13]

    ZHANG Y Zh, LIU F R, CHEN J M, et al. Effects of surface quality on corrosion resistance of 316L stainless steel parts manufactured via SLM[J]. Journal of Laser Applications, 2017, 29(2):022306. DOI: 10.2351/1.4983263

    [14]

    LI R D, LIU J H, SHI Y S, et al. 316L stainless steel with gradient porosity fabricated by selective laser melting[J]. Journal of Materials Engineering & Performance, 2010, 19(5):666-671. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f1034e80b854485e85ea71073d9316f7

    [15]

    YASA E, KRUTH J P. Microstructural investigation of selective laser melting 316l stainless steel parts exposed to laser re-melting[J]. Procedia Engineering, 2011, 19(1):389-395. http://www.sciencedirect.com/science/article/pii/S1877705811029390

    [16]

    BRANDL E, HECKENBERGER U, HOLZINGER V, et al.Additive manufactured AlSi10Mg samples using selective laser melting (SLM):Microstructure, high cycle fatigue, and fracture behavior[J]. Materials & Design, 2012, 34:159-169. http://www.sciencedirect.com/science/article/pii/S0261306911005590

    [17]

    SUN T T, YANG Y Q, SU X B, et al.Research on densification of 316L stainless steel powder in selective laser melting process[J]. Laser Technology, 2010, 34(4):443-446(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201004005.htm

    [18]

    LU J B, YANG Y Q, WANG D, et al. Analysis of affecting factors of overhanging surface quality by selective laser melting[J]. Laser Technology, 2011, 35(2):148-151(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201102002

    [19]

    WANG M Y, ZHU H H, QI T, et al. Selective laser melting Al-Si aluminum alloy and the crack formation mechanism[J]. Laser Technology, 2016, 40(2):219-222(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201602014

    [20]

    ZHANG X Y, FANG G, ZHOU J. Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical behavior:A review[J]. Materials, 2017, 10(1):50-54. DOI: 10.3390/ma10010050

    [21]

    FRAZIER W E. Metal additive manufacturing:A review[J]. Journal of Materials Engineering and Performance, 2014, 23(6):1917-1928. DOI: 10.1007/s11665-014-0958-z

    [22]

    YAN C, HAO L, HUSSEIN A, et al.Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Materials & Design, 2014, 55:533-541. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6527fa9912c263ad47db807d6cbf5d62

    [23]

    MA M, WANG Z, ZENG X. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition[J]. Materials Science and Engineering, 2017, A685:265-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0a29cee07e1dff944b329979daf2183d

    [24]

    AHMADI A, MIRZAEIFAR R, MOGHADDAM N S, et al. Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting:A computational framework[J]. Materials & Design, 2016, 112:328-338. http://www.sciencedirect.com/science/article/pii/S0264127516312175

    [25]

    LI P, WANG Z, PETRINIC N, et al.Deformation behaviour of stainless steel micro lattice structures by selective laser melting[J]. Materials Science and Engineering, 2014, A614(5):116-121. http://www.sciencedirect.com/science/article/pii/S0921509314008806

    [26]

    GUNENTHIRAM V, PEYRE P, SCHNEIDER M, et al.Analysis of laser-melt pool-powder bed interaction during the selective laser melting of a stainless steel[J]. Journal of Laser Applications, 2017, 29(2):022303. DOI: 10.2351/1.4983259

    [27]

    ZHANG B, DEMBINSKI L, CODDET C. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316l powder[J]. Materials Science and Engineering, 2013, A584(6):21-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a27610fa12edaf6566a66e02191e47c9

    [28]

    MIRZA F, CHEN D. A unified model for the prediction of yield strength in particulate-reinforced metal matrix nanocomposites[J]. Materials, 2015, 8(8):5138-5153. DOI: 10.3390/ma8085138

    [29]

    WANG D, YANG Y, HUANG Y L, et al.Impact of inter-layer scan strategy on quality of direct fabrication metal parts in SLM process[J]. Laser Technology, 2010, 34(4):447-451(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201004015

图(13)  /  表(3)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-26
  • 修回日期:  2017-10-31
  • 发布日期:  2018-05-24

目录

/

返回文章
返回