Abstract:
In order to obtain high-performance Ni-Fe-Al alloy from nickel, iron and aluminum elemental powder, based on the molding process of 3-D laser printing for mixed metal powder, a medium-low-power fiber laser was used to study the cladding metallurgy of a certain percentage of nickel, iron and aluminum mixed powder through a series of laser cladding experiments on stainless steel and high temperature nickel-based alloy substrates respectively. During the experiment, the combination of laser parameters (laser frequency, scanning speed, laser power and defocus amount) was optimized and a good single track cladding result was obtained. Its macro-morphology and microstructure were observed by using a laser scanning confocal microscope, a metallographic microscope, a scanning electron microscopy and other means of detection respectively. It is found that, a good alloy without pores and cracks is obtained and a good metallurgical bond is formed with the substrate. The hardness of the cladding layer is 30HV lower than that of the substrate, but the hardness is uniform in the section. The study result is helpful to obtain an isotropic metallurgical layer.