高级检索
李慧, 王志敏, 张丰丰, 王明强, 李家佳, 崔大复, 彭钦军, 许祖彦. 全固态单频激光技术[J]. 激光技术, 2016, 40(1): 141-147. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.031
引用本文: 李慧, 王志敏, 张丰丰, 王明强, 李家佳, 崔大复, 彭钦军, 许祖彦. 全固态单频激光技术[J]. 激光技术, 2016, 40(1): 141-147. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.031
LI Hui, WANG Zhimin, ZHANG Fengfeng, WANG Mingqiang, LI Jiajia, CUI Dafu, PENG Qinjun, XU Zuyan. Single-frequency all-solid-state laser technology[J]. LASER TECHNOLOGY, 2016, 40(1): 141-147. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.031
Citation: LI Hui, WANG Zhimin, ZHANG Fengfeng, WANG Mingqiang, LI Jiajia, CUI Dafu, PENG Qinjun, XU Zuyan. Single-frequency all-solid-state laser technology[J]. LASER TECHNOLOGY, 2016, 40(1): 141-147. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.031

全固态单频激光技术

基金项目: 

国家重大科研装备研制项目资助项目(ZDYZ2012-2);国家重大科学仪器设备开发专项资助项目(2012YQ120048);国家自然科学基金资助项目(61138004)

详细信息
    作者简介:

    李慧(1989-),女,硕士研究生,现主要从事固体激光器方面的研究。

    通讯作者:

    王志敏,E-mail:wangzmok@163.com

  • 中图分类号: TN248.1

Single-frequency all-solid-state laser technology

  • 摘要: 全固态单频激光器在高分辨率激光光谱学、相干通信、激光雷达、引力波探测等方面的重要应用,成为全固态激光器研究的一个重要方向。概述了几种获得全固态单频激光器的方法,主要有短腔法、耦合腔法、双折射滤光片法、光栅选频法、插入标准具法、单向环形腔法、扭转模腔法等。介绍了不同方法实现单频的基本原理及国内外进展,总结比较了它们各自的优缺点和适用范围,为不同的单频激光应用需求提供了不同的单频技术手段。
    Abstract: Single-frequency all-solid-state lasers are widely used in the fields of high resolution spectroscopy, coherent communication, radars, and gravitation-wave detection and so on. Single-frequency all-solid-state laser is one of the important research fields of all-solid-state lasers. To adopt appropriate single-frequency laser technology better and meet different requirements in applications, several techniques to realize single-frequency all-solid-state lasers were summarized, such as microcavity, coupled cavity, birefringent filters, F-P etalons in cavity, unidirectional ring cavity, twisted mode cavity. Their principles and developments at home and abroad were introduced. The characteristics and application situations were also compared and summarized.
  • [1]

    ZHOU B K, GAOY Z, CHEN T R, et al .Principles of laser [M].6th ed. Beijing: National Defense Industry Press, 2008: 212 (in Chinese).

    [2]

    ZAYHOWSKI J J, MOORADIAN A. Single-frequency microchip Nd lasers[J]. Optics Letters, 1989, 14(1):24-26.

    [3]

    TAIRA T, MUKAI A, NOZAWA Y K, et al. Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers[J]. Optics Letters, 1991, 16(24): 1955-1957.

    [4]

    SHAN Zh G, SHEN X H, HUANG G S, et al. Single longitudinal mode operation of LD pumped Nd:YAG microchip laser[J]. Laser Infrared, 1993, 23(6):22-23 (in Chinese).

    [5]

    GAVRILOVIC P, ONEILL M S, ZARRABI J H, et al. High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3m[J]. Applied Physics Letters, 1994, 65(13):1620-1622.

    [6]

    GAO Ch Q, LI J Z, WEI G H. LD-pumped single-frequency seeding lasers and the linewidth measurement[J]. Optical Technique, 2000, 26(6): 546-547 (in Chinese).

    [7]

    LIN Z, GAO Ch Q, GAO M, et al. Diode-pumped single-frequency microchip CTH:YAG lasers using different pump spot diameters[J]. Applied Physics, 2009, B94(1): 81-84.

    [8]

    LI G, YAO B Q, ZHANG C H, et al .Diode pumped operation of Tm,Ho:YVO4 microchip laser[J]. Chinese Physics Letters, 2010, 27(3):034201.

    [9]

    MENG L, PAN Z Q, GENG J X, et al. A short-cavity phosphate glass fiber laser and its output characteristics [J]. Chinese Journal of Lasers, 2010, 37(2): 362-366 (in Chinese).

    [10]

    [ZK(#]ZHANG W N, LI C, FENG Z M, et al. Short cavity single frequency fiber laser at 1080nm based on highly Yb3+-doped phosphate fiber [J]. Laser Optoelectronics Progress, 2012, 49(10):100601 (in Chinese) .

    [11]

    YANG F, CHEN D J, PAN Z Q, et al. short liner cavity single-frequency fiber laser with active frequency stabilization by fiber Bragg grating [J]. Chinese Journal of Lasers, 2012, 39(9): 0902005 (in Chinese).

    [12]

    CHEN Y F, HUANG T M, WANG C L, et al. Theoretical and experimental studies of single-mode operation in diode pumped Nd:YVO4/KTP green laser: influence of KTP length[J]. Optics Communications, 1998, 152(4/6):319-323.

    [13]

    ZHENG Q, ZHAO L. Study of a diode pumped single frequency Nd:YVO4 laser at 1064nm[J]. Optical Technique, 2003, 29(6):675-676 (in Chinese).

    [14]

    WANG J Y, ZHENG Q, XUE Q H, et al.A watt level single frequency green laser obtained by birefringent filter technique[J]. Acta Photonica Sinica, 2005, 34(3):321-324(in Chinese) .

    [15]

    XING J H, JIAO M X, LIU Y. Design and experimental study of electro-optically tunale single frequency Nd:YAG laser at 1064nm[J]. Chinese Journal of Lasers, 2014, 41(3):0302007 (in Chinese) .

    [16]

    GAO L L, TAN H M. LD-pumped all-solid-state single-frequency laser technique [J]. OME Information, 2002, 9(11):8-11 (in Chinese).

    [17]

    ZHOU F, FERGUSON A I. Tunable single frequency operation of a diode laser pumped Nd:YAG microchip at 1.3m[J]. Electronics Letters,1990, 26(1): 490-493.

    [18]

    PEDERSEN C, HANSEN P L, SKETTRUP T, et al. Diode-pumped single-frequency Nd:YVO4 laser with a set of coupled resonators[J]. Optics Letters, 1995,20(12):1389-1391.

    [19]

    HARA H, WALSH B M, BARNES N P. Tunability of a 946nm Nd:YAG microchip laser by use of a double-cavity configuration[J].Applied Optics, 2004,43(15):3171-3173.

    [20]

    LI J, YANG S H, ZHAO C M, et al. High efficient single-frequency output at 1991nm from a diode-pumped Tm:YAP coupled cavity[J]. Optics Express, 2010,18(12):12161-12167.

    [21]

    LITTMAN M G, METCALF H J. Spectrally narrow pulsed dye laser without beam expander [J]. Applied Optics, 1978, 17(14):2224-2227.

    [22]

    KANGAS K W, LOWENTHAL D D, MULLER Ⅲ C H. Single-longitudinal-mode, tunable, pulsed Ti:sapphire laser oscillator[J].Optics Letters, 1989,14(1):21-23.

    [23]

    SHAO Z X. High efficiency SLM Littman configuration Ti:sapphire laser system[J]. Chinese Jouranal of Lasers, 1994,21(9):717-720(in Chinese).

    [24]

    KO D K, LIM G, KIM S H, et al. Self-seeding in a dual-cavity-type pulsed Ti:sapphire laser oscillator[J]. Optics Letters, 1995, 20(7): 710-712.

    [25]

    MERRIAM A J, YIN G Y. Efficient self-seeding of a pulsed Ti3+:Al2O3 laser [J]. Optics Letters, 1998, 23(13):1034-1036.

    [26]

    WANG R, WANG N, TENG H, et al. High-power tunable narrow-line with Ti:sapphire laser at repetition rate of 1kHz [J]. Applied Optics, 2012,51(22):5527-5530.

    [27]

    WEI F, CHEN D J, XIN G F, et al. A compact and rugged tunable external cavity diode laser with Littman-Metcalf configuration [J]. Chinese Jouranal of Lasers, 2013, 40(11):1102012 (in Chinese).

    [28]

    XU H Z, QIU Y S, XU B. Wavelength tuning characteristic improvement of external cavity diode lasers[J]. Journal of Applied Optics, 2008,29(6):975-977 (in Chinese).

    [29]

    ZHANG X L, JUY L, WANG Y Z. Diode-pumped single frequency Tm,Ho:YLF laser at room temperature[J]. Chinese Optics Letters, 2005, 3(8): 463-465.

    [30]

    YAO B Q, KE L, DUAN X M, et al. Stable wavelength narrow linewidth diode pumped Tm:YLF laser with double etalons[J]. Laser Physics Letters, 2009, 6(8):563-566.

    [31]

    YAO B Q, LIU X L, YU L X, et al. Resonantly pumped single frequency Er:YAG laser at 1645nm[J]. Laser Physics, 2012, 22(2):403-405.

    [32]

    ZHU L N, GAO Ch Q, WANG R,et al. Resonantly pumped 1.645m single longitudinal mode Er:YAG laser with intracavity etalons[J].Applied Optics, 2012, 51(10):1616-1618.

    [33]

    ZHU L N, GAO Ch Q, WANG R, et al. Fiber-bulk hybrid Er:YAG laser with 1617nm single frequency laser output[J]. Laser Physics Letters, 2012, 9(9):674-677.

    [34]

    WANG L, GAO C Q, GAO M W, et al. Diode-pumped 2m tunable single-frequency Tm:LuAG laser with intracavity etalons[J]. Applied Optics, 2013,52(6): 1272-1275.

    [35]

    KANE T J, BYER R L. Monolithic, unidirectional single-mode Nd:YAG ring laser[J]. Optics Letters, 1985, 10(2):65-67.

    [36]

    ZANG E J, CAO J P, LI C Y. The study of solid state monolithic semi-nonplanar ring laser[J]. Advanced Measurement and Laboratory Management, 2004, 12(1):19-22(in Chinese) .

    [37]

    ZIMER H, WITTROCK U. 1.6W of single-mode output power from a novel power-scaling scheme for monolithic nonplanar ring lasers[J]. Optics Letters, 2004,29(14):1635-1637.

    [38]

    ZHAO Y, GAO Ch Q, CAO Y L, et al. Study on laser-diode-pumped 1319nm single frequency laser tuning and noise suppression[J]. Laser Technology, 2004, 28(5):466-468(in Chinese).

    [39]

    YAO B Q, DUAN X M, FANG D, et al.7.3W of single-frequency output power at 2.09m from an Ho:YAG monolithic nonplanar ring laser[J]. Optics Letters, 2008, 33(18):216-2163.

    [40]

    WANG R, GAO C Q, ZHENG Y, et al. A resonantly pumped 1645nm Er:YAG nonplanar ring oscillator with 10.5W single frequency output[J].IEEE Photonics Technology Letters, 2013,25(10): 955-957.

    [41]

    WANG L, GAO Ch Q, GAO M W, et al. Resonantly pumped monolithic nonplanar Ho:YAG ring laser with high-power single-frequency laser output at 2122nm[J]. Optics Express, 2013, 21(8):9541-9546.

    [42]

    ZHAO J Y, ZHANG K S. LD dual-end-pumped high power CW single- frequency Nd:YVO4 laser [J]. Acta Sinica Quantum Optica, 2004, 10(2):87-92 (in Chinese).

    [43]

    SHARDLOW P C, DAMZEN M J. High efficiency 17W single frequency ring laser with feedback mirror[C]//European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference. New York, USA:IEEE, 2009:1.

    [44]

    WANG Zh Y. Investigation of 880nm LD pumped high power CW single- frequency Nd:YVO4 laser [D]. Taiyuan: Shanxi University, 2011:30-35(in Chinese) .

    [45]

    XIE S Y, BO Y, XU J L, et al. A high power single frequency diode side-pumped Nd:YAG ring laser[J]. Chinese Physics Letters, 2011, 28(8):084207.

    [46]

    LUH D, SU J, ZHENG Y H, et al. Physical conditions of single-longitudinal-modeoperation for high-power all-solid-state lasers[J]. Optics Letters, 2014,39(5):1117-1120.

    [47]

    WANG P Y, XIE S Y, BO Y, et al. 33W quasi-continuous-wave narrow-band sodium D2a laser by sum-frequency generation in LBO[J]. Chinese Physics, 2014, B23(9): 094208.

    [48]

    EVTUHOV V, SIEGMAN A E. A twisted-mode technique for obtaining axially uniform energy density in a laser cavity[J]. Applied Optics, 1965, 4(1):142-143.

    [49]

    [JP2]WU E, PAN H, ZHANG S, et al. High power single-longitudinal-mode operation in a twisted-mode-cavity laser with a c-cut Nd:GdVO4[JP] crystal[J]. Applied Physics, 2005, B80(4):459-462.

    [50]

    HAO E J, LI T, TAN H M, et al. Single frequency laser at 473nm by twisted mode technique[J]. Laser Infrared, 2009, 39(9): 924-927 (in Chinese) .

    [51]

    ZHANG Y, GAO Ch Q, GAO M, et al. A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique[J]. Laser Physics Letters, 2010, 7(1): 17-20.

    [52]

    GAO Ch Q, WANG R, LIN Z, et al. 2m single-frequency Tm:YAG laser generated from a diode-pumped L-shaped twisted mode cavity[J]. Applied Physics, 2012, B107(1):67-70.

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-16
  • 修回日期:  2015-03-19
  • 发布日期:  2016-01-24

目录

    /

    返回文章
    返回