高级检索

改进边界指示函数的水平集活动轮廓模型

郑伟, 张晶, 杨虎

郑伟, 张晶, 杨虎. 改进边界指示函数的水平集活动轮廓模型[J]. 激光技术, 2016, 40(1): 126-130. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.028
引用本文: 郑伟, 张晶, 杨虎. 改进边界指示函数的水平集活动轮廓模型[J]. 激光技术, 2016, 40(1): 126-130. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.028
ZHENG Wei, ZHANG Jing, YANG Hu. Level set active contour model improving boundary indicator function[J]. LASER TECHNOLOGY, 2016, 40(1): 126-130. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.028
Citation: ZHENG Wei, ZHANG Jing, YANG Hu. Level set active contour model improving boundary indicator function[J]. LASER TECHNOLOGY, 2016, 40(1): 126-130. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.028

改进边界指示函数的水平集活动轮廓模型

基金项目: 

河北大学医工交叉研究中心开放基金资助项目(BM201103)

详细信息
    作者简介:

    郑伟(1972-),女,教授,博士,现主要从事图像处理、图像安全通信的研究。E-mail:147685650@qq.com

  • 中图分类号: TN911.73

Level set active contour model improving boundary indicator function

  • 摘要: 由于受成像原理的限制,导致超声图像对比度低、边界模糊,因此基于边界的水平集分割效果很不理想。为了提高超声图像的分割精度和分割效率,提出了一种梯度信息与区域信息相结合的水平集分割算法。首先对基于边界的距离正则化水平集演化(DRLSE)模型进行改进,将区域信息引入到边界指示函数中,并用改进后的边界指示函数代替DRLSE模型中的边界指示函数,最后,得到一个梯度与区域信息相结合的水平集演化模型。结果表明,本文中的模型能准确分割甲状腺肿瘤超声图像,且在分割效率和分割精确度方面均比DRLSE模型有所提高。
    Abstract: Because of the restriction of imaging principle, ultrasound images led toare always with low contrast and weak boundaries, segmentation effect of level set based on edge was not ideal. In order to improve segmentation precision and efficiency of ultrasound images, new a novel level set segmentation algorithm was proposed combining gradient information with regional information was proposed. Firstly, distance regularized level set evolution (DRLSE) model based on boundary was improved, regional information was put into boundary indicator function. And then, the improved boundary indicator function was used instead of DRLSE model's. Finally, a level set evolution model combining gradient information with regional information was obtained. The experimental results show that the model can accurately segment ultrasound images of thyroid tumor and the segmentation efficiency and precision are higher than DRLSE model.
  • [1]

    ZHANG K H, SONG H H, ZHANG L. Active contours driven by local image fitting energy[J]. Pattern Recognition, 2010, 43(4):1199-1206.

    [2]

    CHEN K, LI B, TIAN L F. A segmentation algorithm of pulmonary nodules using active contour model based on fuzzy speed function[J]. Acta Automatica Sinica, 2013, 39(8):1257-1264(in Chinese).

    [3]

    LIU R J, HE C J, YUAN Y. Active contours driven by local and global image fitting energy[J]. Journal of Computer-Aided Design Computer Graphics, 2012, 24(3):364-371(in Chinese).

    [4]

    LI C M, XU C Y, GUI C F, et al. Distance regularized level set evolution and its application to image segmentation[J]. IEEE Transactions Image Processing, 2010, 19(12):3243-3254.

    [5]

    CASELES V, KIMMEL R, SAPIRO G. Geodesic active contour[J]. International Journal of Computer Vision,1997,22(1):61-79.

    [6]

    ZHENG W, PAN Z Y, HAO D M. The Improved DRLSE ultrasound image segmentation model based on phase congruency[J]. Opto-Electronic Engineering, 2014, 41(1):60-64(in Chinese).

    [7]

    ZHANG J W, FANG L, CHEN Y J, et al. Application of local GAC model for medical image segentation[J]. Journal of Image and Graphics, 2012, 17(2):215-221(in Chinese).

    [8]

    WANG S F, RUAN J, WANG Y. Image segmentation based on improved LBF model[J]. Computer Applications and Software, 2011, 28(2):25-28(in Chinese).

    [9]

    ZHAO J, QI Y M, PAN Z Y. Active contour segmentation modal of combining global and dual-core local fitting energy[J]. Journal of Computer Applications, 2013, 33(4):1092-1095(in Chinese).

    [10]

    LI Ch M, XU Ch Y, GUI Ch F, et al. Level set evolution without re-initialization:A new variational formulation[C]//IEEE International Conference on Computer Vision and Pattern Recognition. New York, USA:IEEE,2005:430-436.

    [11]

    YU R X, ZHU B. New stop function of level set method[J]. Journal of System Simulation, 2008, 20(22):6154-6157(in Chinese).

    [12]

    ZHOU B, HE C J, YUAN Y. Edge-based active contour model with adaptive varying stopping function[J]. Application Research of Computers, 2012, 29(1):366-368(in Chinese).

    [13]

    QI Y Q, ZHANG T. Region-based method of adaptive distance preserving level set evolution[J]. Research Journal of Applied Sciences, Engineering and Technology, 2013, 5(5):1608-1613.

    [14]

    ZHANG K H, ZHANG L, SONG H H. Active contours with selective local or global segmentation:A new formulation and level set method[J]. Image and Vision Computing, 2010, 28(4):668-676.

    [15]

    COLLINS D L, EVANS A C, HOLMS C, et al. Automatic 3-D segmentation of neuro-anatomical structures from MRI[C]//14th International Conference on Information Processing in Medical Imaging. De Berder, France:Information Processing in Medical Imaging,1995:139-152.

  • 期刊类型引用(2)

    1. 赵辉,郭利强,兰国峰,郝慧艳,程日炜. 电磁炮炮管振动信号分析及处理方法. 火力与指挥控制. 2021(07): 149-154 . 百度学术
    2. 陈家键,胡慧珠,缪立军,周一览,舒晓武. 双频激光干涉三自由度微振动测量系统. 光学精密工程. 2019(07): 1435-1443 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 4
出版历程
  • 收稿日期:  2014-10-23
  • 修回日期:  2014-12-16
  • 发布日期:  2016-01-24

目录

    /

    返回文章
    返回