高级检索

可见光波段的窄带导模共振滤光片的设计

郑煌晏, 胡芳仁

郑煌晏, 胡芳仁. 可见光波段的窄带导模共振滤光片的设计[J]. 激光技术, 2016, 40(1): 118-121. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.026
引用本文: 郑煌晏, 胡芳仁. 可见光波段的窄带导模共振滤光片的设计[J]. 激光技术, 2016, 40(1): 118-121. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.026
ZHENG Huangyan, HU Fangren. Design of narrowband guided-mode resonance filters in visible wavelength region[J]. LASER TECHNOLOGY, 2016, 40(1): 118-121. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.026
Citation: ZHENG Huangyan, HU Fangren. Design of narrowband guided-mode resonance filters in visible wavelength region[J]. LASER TECHNOLOGY, 2016, 40(1): 118-121. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.026

可见光波段的窄带导模共振滤光片的设计

基金项目: 

国家自然科学基金资助项目(61274121);江苏省自然科学基金资助项目(BK2012829);南京邮电大学人才引进科研启动基金资助项目(NY212007)

详细信息
    作者简介:

    郑煌晏(1990-),男,硕士研究生,主要研究方向为激光材料与光学器件。

    通讯作者:

    胡芳仁,E-mail:hufr@njupt.edu.cn

  • 中图分类号: TN253;O436

Design of narrowband guided-mode resonance filters in visible wavelength region

  • 摘要: 为了使导模共振滤光片能在可见光范围内表现出良好的滤光效果,根据严格耦合波理论和等效介质理论,提出基于半导体材料单晶氧化锌薄膜的亚波长导模共振光栅滤光片的结构设计。通过仿真分析可知,该滤光片在可见光范围内的475nm,530nm与650nm波长处,反射效率都达到了100%,旁带反射率低于4%,并且峰值带宽均小于0.3nm。结果表明,该滤光片能分别在可见光的红、绿、蓝波段表现出良好的滤光效果,可以作为三基色的滤光片,在彩色合成与调制中得到重要的应用。
    Abstract: In order to achieve good filter performance of guided-mode resonance filters (GMRF) in visible light region, according to rigorous coupled wave theory and equivalent medium theory, a subwavelength GMRF filter was designed based on semiconductor material of ZnO. Simulation and analysis showed that reflection efficiency reached 100% at 475nm, 530nm and 650nm, with sideband reflectance below 4% and bandwidth less than 0.3nm. The results show that GMRF has excellent performance in red, green and blue wavelength region of visible light. GMRFs can be used as three-primary-color filters and are useful for color synthesis and modulation.
  • [1]

    GOLUBENKOG A, SVAKHIN A S, SYCHUGOV V A, et al. Phenomenon of full external reflection of light from the surface of a corrugated dielectric waveguide and its use in narrow band filtres[J]. Soviet Physics-Lebedev Institute Reports, 1985, 15(11):36-40.

    [2]

    POPOV E, MASHEV L, MAYSTRE D. theoretical study of the anomalies of coated dielectric gratings[J]. Journal of Modern Optics, 1986, 33(5):607-619.

    [3]

    MAGNUSSON R, WANG S S. New principle for optical filters[J]. Applied Physics Letters, 1992, 61(9):1022-1024.

    [4]

    TIBULEAC S, MAGNUSSON R. Reflection and transmission guided-mode resonance filters [J].Journal of the Optical Society of America, 1997, 14(7):1617-1626.

    [5]

    WANG Q, ZHANG D W, CHEN J P, et al. Recent progress of guided-mode resonance filters[J]. Laser Technology, 2010, 34(1):71-74(in Chinese).

    [6]

    KONG W J, ZHENG B B, YUN M J, et al. Guided-mode resonance filter with narrow waveband for three primary colors [J]. Acta Optica Sinica, 2011, 31(10):57-60(in Chinese).

    [7]

    MA J Y, LIU S J, WEI C Y, et al. Design of reflection resonant grating filters[J]. Acta Physica Sinica, 2008, 57(2):827-833(in Chinese).

    [8]

    SANG T, CAI T, LIU F, et al. Design and analysis of guided-mode resonance filter containing an absentee layer with an antireflective surface[J]. Acta Physica Sinica,2013,62(2):334-339(in Chinese).

    [9]

    SONG J Y, FENG S F, ZHANG X P, et al. Optical filtering and angle-resolved tuning properties of the waveguided grating structures [J]. Acta Physica Sinica,2009,58(9):6542-6548(in Chinese).

    [10]

    ZHAO H, ZHU B, HU F R, et al. Design and simulation of guided-mode resonance filter based on GaN[J]. Study on Optical Communications, 2014, 186(6): 55-58(in Chinese).

    [11]

    MA J Y, LIU S J, WEI C Y, et al. Design and analysis of double layer resonant grating filters in the visible spectral region[J]. Acta Physica Sinica, 2008, 57(7):4195-4201(in Chinese).

    [12]

    GUO L W, MA J Y. High-sensitive biosensor based on GMR in self-suspended grating[J]. Acta Photonica Sinica, 2012, 41(12):1483-1487(in Chinese).

    [13]

    QIN Y W. Study on optical coherence tomography detection of ZnO film[J]. Laser Technology, 2014, 38(6):845-847(in Chinese).

    [14]

    SUN H, ZHANG Q F, WU J L. Ultraviolet light emitting diode based on ZnO nanowires[J]. Acta Physica Sinica, 2007, 56(6):3479-3482(in Chinese).

    [15]

    SHEN D Z,MEI Z X,LIANG H L, et al. ZnO-based material, heterojunction and photoelctronic device[J]. Chinese Journal of Luminescence, 2014, 35(1):1-60(in Chinese).

    [16]

    WANG S S, MAGNUSSON R. Transmission bandpass guided-mode resonance filters[J]. Applied Optics, 1995, 34(35):8106-8109.

计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-30
  • 修回日期:  2014-12-25
  • 发布日期:  2016-01-24

目录

    /

    返回文章
    返回