高级检索

用于高功率激光放大器的单层宽谱增透膜

吕海兵, 赵松楠, 严鸿维, 王韬, 晏良宏

吕海兵, 赵松楠, 严鸿维, 王韬, 晏良宏. 用于高功率激光放大器的单层宽谱增透膜[J]. 激光技术, 2016, 40(1): 38-41. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.009
引用本文: 吕海兵, 赵松楠, 严鸿维, 王韬, 晏良宏. 用于高功率激光放大器的单层宽谱增透膜[J]. 激光技术, 2016, 40(1): 38-41. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.009
LV Haibing, ZHAO Songnan, YAN Hongwei, WANG Tao, YAN Lianghong. Single-layer broadband antireflective coating for high power laser amplifier[J]. LASER TECHNOLOGY, 2016, 40(1): 38-41. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.009
Citation: LV Haibing, ZHAO Songnan, YAN Hongwei, WANG Tao, YAN Lianghong. Single-layer broadband antireflective coating for high power laser amplifier[J]. LASER TECHNOLOGY, 2016, 40(1): 38-41. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.009

用于高功率激光放大器的单层宽谱增透膜

基金项目: 

国家自然科学基金资助项目(61405180)

详细信息
    作者简介:

    吕海兵(1971-),男,副研究员,主要从事激光薄膜技术的研究。E-mail:haibinglv@163.com

  • 中图分类号: O484.4+1

Single-layer broadband antireflective coating for high power laser amplifier

  • 摘要: 为了获得用于高功率激光放大器的单层宽带增透膜,采用有机聚合物聚乙烯吡咯烷酮掺杂调控二氧化硅胶体生长制备了粒度分布更宽广的稳定胶体体系,通过提拉镀膜工艺,制备了单层增透膜。采用粒度仪和粘度仪监测胶体的性质,用分光光度计测量了膜层透过率,并用X射线能谱分析了膜层结构。结果表明,聚乙烯吡咯烷酮引入胶体中使得胶体粒度分布更宽,所得膜层具有折射率渐变特性,因而膜层具有宽带增透的效果;膜层在550nm~950nm连续波段内透射率不低于99%。单层宽谱增透膜层不需后处理就可投入使用,膜层性能稳定,满足了激光装置片状放大器的运行要求。
    Abstract: In order to obtain broadband antireflective single layer coating for high power laser amplifiers, stabilized SiO2 sol system with more widely particle size distribution was prepared from silica sol doped and regulated by organic polymer polyvinylpyrrolidone(PVP). Single-layer broadband antireflective coating was developed by sol-gel dipping method. The properties of sol were measured by nanoparticle analyzer and viscometer, the transmittance was measured by spectrophotometer and the coating structure was measured by X-ray spectrometer. The results indicate that the introduction of PVP into silica sol leads to wider distribution of silica sol particles, which makes the coatings have the graded characteristics of refractive index. Thus the coating is broadband and antireflective. The inside transmittance of coatings is higher than 99% in the 550nm~950nm. The single-layer broadband antireflection coating has the stable film performance and can be put to use without post-processing. The single-layer anti-refractive coating meets the requirement of high power laser amplifiers.
  • [1]

    XUE Ch R, YI K, SHAO J D. 193nm fluoride antireflection coatings[J]. High Power Laser and Particle Beams, 2011, 23(3):675-680(in Chinese).

    [2]

    YE X, JIANG X D, XIAO L,et al. Transmission of silica sub-wavelength nano-microstructure[J]. High Power Laser and Particle Beams, 2010, 22(9):1987-1990(in Chinese).

    [3]

    LIU H S, WANG Zh Sh, JI Y Q, et al. Fabrication of broadband antireflection coating based on ion beam sputtering deposition technique with time-power monitoring[J]. High Power Laser and Particle Beams, 2011, 23(2):407-411(in Chinese).

    [4]

    YANG W, HUI H H, MA H J, et al. KDP crystal antireflective coatings prepared by spin coating method[J]. High Power Laser and Particle Beams, 2013, 25(12):3348-3352(in Chinese).

    [5]

    ZHANG Ch L, LI X B, LV H B, et al. Influence of impurities on laser-induced damage of sol-gel SiO2 films[J]. High Power Laser and Particle Beams, 2011, 23(5):1267-1271(in Chinese).

    [6]

    SHEN Z C, KONG W J, SONG Y X, et al. The optimum design and preparation of ZrO2/SiO2 polarizing film[J]. Laser Technology, 2005,29(1):101-103(in Chinese).

    [7]

    GAO X D, WEI Ch. Manufacture of interference edge filter film on the end of fiber for optical communication[J]. Laser Technology, 2013, 37(3):314-316(in Chinese).

    [8]

    WANG R H, LIU X M, ZHU L, et al. Improvement of antireflection coating on KTP crystal[J]. Laser Technology, 2009,33(3):249-251(in Chinese).

    [9]

    YAN L H, ZHAO S N, LV H B, et al. Preparation of durable hydrophobic and antireflective silica coating[J]. Laser Technology, 2010,34(4):463-465(in Chinese).

    [10]

    DAI G, LU J, WANG B, et al. Analysis and comparison of coating damage induced by laser at 1ms and 10ns pulse widths[J]. Laser Technology, 2011,35(4):477-480(in Chinese).

    [11]

    THOMAS I M. High laser damage threshold porous silica antireflective coating[J].Applied Optics, 1986, 25(9):1481-1483.

    [12]

    PRENE P, PRIOTTON J J, BEAURAIN L, et al. Preparation of a sol-gel broadband antireflective and scratch-resistant coating for amplifier blastshields of the French laser LIL[J]. Journal of Sol Gel Science and Technology, 2000, 19(13):533-537.

    [13]

    THOMAS I M. A two layer broadband antireflective coatings prepared from a methyl silicon and porous silica[J]. Proceedings of The International Society for Optical Engineering, 1997, 3136:215-219.

    [14]

    PANG J, WANG Y Q, HU X Y, et al. Preparation of broadband and high-transmissivity nano TiO2-SiO2 anti-reflection coating via sol-gel method[J]. Electronic Components and Materials, 2009, 28(9):1-4(in Chinese).

    [15]

    JIA Q Y, LE Y Q, TANG Y X. Broadband and scratch-resistant antireflective coating composed of SiO2/TiO2 prepared from sol-gel processing[J]. Acta Optical Sinica, 2004, 24(1):65-69(in Chinese).

    [16]

    YE L Q, ZHANG Q H, ZHANG Y L, et al. Design and preparation of SiO2/TiO2/SiO2-TiO2 antireflective coatings with excellent abrasion-resistance and transmittance via sol-gel process[J]. Journal of Inorganic Materials, 2012, 27(8):871-875(in Chinese).

    [17]

    FU T, WU G M, SHEN J, et al. Preparation of nanoporous broadband antireflective coatings by sol-gel method[J]. Functional Materials, 2003, 34(5):579-584(in Chinese).

计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-19
  • 修回日期:  2014-12-03
  • 发布日期:  2016-01-24

目录

    /

    返回文章
    返回