高级检索

同轴型激光器焊后偏移的理论与实验研究

周晶晶, 吴正辉

周晶晶, 吴正辉. 同轴型激光器焊后偏移的理论与实验研究[J]. 激光技术, 2016, 40(1): 33-37. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.008
引用本文: 周晶晶, 吴正辉. 同轴型激光器焊后偏移的理论与实验研究[J]. 激光技术, 2016, 40(1): 33-37. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.008
ZHOU Jingjing, WU Zhenghui. Theoretical and experimental study on post-weld-shift of coaxial laser diodes[J]. LASER TECHNOLOGY, 2016, 40(1): 33-37. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.008
Citation: ZHOU Jingjing, WU Zhenghui. Theoretical and experimental study on post-weld-shift of coaxial laser diodes[J]. LASER TECHNOLOGY, 2016, 40(1): 33-37. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.008

同轴型激光器焊后偏移的理论与实验研究

基金项目: 

国家自然科学基金资助项目(50975293)

详细信息
    作者简介:

    周晶晶(1990-),女,硕士研究生,现主要从事光电子器件封装制造理论和技术的研究。

    通讯作者:

    吴正辉,E-mail:wuzhenghui@mail.csu.edu.cn

  • 中图分类号: TG456.7

Theoretical and experimental study on post-weld-shift of coaxial laser diodes

  • 摘要: 为了研究同轴型激光器激光焊接产生的焊后偏移(PWS),采用基于有限元热-结构耦合理论的分析方法,建立了同轴型激光器3束激光焊接模型,分析了激光焊接工艺参量对焊后偏移的影响规律,并进行了激光锤校正实验研究,获得了同轴型激光器激光焊接前后及校正后的耦合光功率值。结果表明,同轴型激光器的焊后偏移受到3个焊点功率分布和位置分布等因素的影响;耦合光功率在激光锤校正后整体呈上升趋势,最大耦合光功率可恢复至94%,有限元仿真分析对PWS的方向预测合理。这一结果对激光焊接同轴型激光器的生产具有一定的指导意义。
    Abstract: In order to study laser welding post-weld-shift (PWS) of coaxial laser diodes based on finite element thermal theory and structural coupling theory, 3 beams laser welding model of coaxial laser diode was developed. Parameters affecting PWS were analyzed and meanwhile, correction experiment of laser hammer was studied. Coupling optical power value was obtained before and after laser welding and after correction. The simulation results demonstrate that power distribution and position distribution of three weld spots have influence on PWS of laser welding of coaxial laser diodes. Coupling light power is on the rise after laser hammering correction, and the maximum coupling power can be up to 94%. Finite element method can be used to prove the reasonable predict of PWS direction. The results have a certain guiding significance on production of coaxial laser in laser welding.
  • [1]

    LIU X X, HUANG R, YAO G, et al. Numerical simulation of the temperature field of laser butt welding of titanium alloy sheet[J].Laser Technology,2013,37(5):700-704(in Chinese).

    [2]

    ZHANG H G, JIN X Z,CHEN G Y, et al. Study on the burning loss of magnesium element in fiber laser welding aluminum alloy 5052[J].Laer Technology,2012,36(6):713-718(in Chinese).

    [3]

    WANG L B. The application and prospect of the laser package technology in Japan microelectronic and photonic[J].OME Information,2003,20(5):3-10(in Chinese).

    [4]

    CHUN J, WU Y L, LI S Y, et al. The parabola approximation algorithm for alignment automation between a laser diode and a single-mode fiber[J].Journal of OptoelectronicsLaser,2005,16(11):1287-1290(in Chinese).

    [5]

    LIN Y, LIU W, SHI F G. Laser welding induced alignment distortion in butterfly laser module packages:effect of welding sequence[J]. IEEE Transactions on Advanced Packaging, 2002,25(1):73-78.

    [6]

    LIN Y, SHI F G. Minimization of welding-induced alignment distortion in butterfly laser module packages:a study of laser pulse shape[J].Optical Engineering, 2007, 46(4):044302.

    [7]

    LIN Y, GUO J, SHAPIRO A A, et al. WIAD minimization in butterfly laser module packages:clip design[J]. IEEE Transactions on Advanced Packaging, 2007,30(3):499-505.

    [8]

    KUANG J H, HUNG T P. Laser hammering technique in butterfly laser diode module[C]//Electronic Packaging Technology Conference. New York,USA:IEEE,2007:874-881.

    [9]

    LIU Y D, SHEEN M T, HSU Y C, et al. Online post-weld shift measurement of butterfly-type laser module employing high-resolution capacitance displacement measurement system[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2010,33(2):91-97.

    [10]

    CHEUNG Y M, YIU C H. Transient characteristics of post-welding shift of TO-can pigtail package[C]//IEEE International Conference on Electronic Packaging Technology. New York,USA:IEEE,2003:221-224.

    [11]

    CHENG W H, HU Y C, KUANG J H. Post-weld-shift compensation techniques in TO-can and butterfly types laser-welded laser module packages[C]//Lasers and Electro-Optics Society.New York,USA:IEEE, 2005:505-506.

    [12]

    CHUN J, WU Y L, LI S Y, et al. Study of post weld shift direction thermal compensation in cylindrical LD packaging[J]. Journal of OptoelectronicsLaser,2007,18(8):911-915(in Chinese).

    [13]

    WU Y L, ZHANG A C, CHUN J, et al. Simulation and experimental study of laser hammering for laser diode packaging[J]. IEEE Transactions on Components and Packaging Technologies, 2007,30(1):163-169.

    [14]

    WU Y L, YANG H T, LI S Y. Online measurement and correction of post-weld shift in laser welding packaging for laser diodes[J]. The International Journal of Advanced Manufacturing Technology, 2010,46(1):135-142.

    [15]

    GUO L, WANG F, ZHANG Q M, et al. Research of techniques of laser-MIG hybrid welding of 304 stainless steel[J].Laser Technology,2013,37(6):781-785(in Chinese).

    [16]

    KIM K, LEE J, CHO H. Analysis of pulsed Nd:YAG laser welding of AISI 304 steel[J]. Journal of Mechanical Science and Technology, 2010, 24(11):2253-2259.

    [17]

    ZHANG H C,HE B. Finite element analysis:ANSYS 13.0 from entry to actual practice[M]. Beijing:China Machine Press, 2011:423-440(in Chinese).

    [18]

    YIU C H, CHEN Y M. Finite element analysis on transient post-welding shift of opto-electronic pigtail package[C]//Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems. New York,USA:IEEE,2005:285-289.

计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-20
  • 修回日期:  2015-01-15
  • 发布日期:  2016-01-24

目录

    /

    返回文章
    返回