Review of calibration method for structured light measurement
-
摘要: 结构光测量技术具有无接触、测量速度快、测量精度较高且成本较低等优点而被广泛应用到各个领域。结构光测量系统的精度取决于系统标定精度。综述了结构光测量系统的现有标定方法,即基于矩阵变换的摄影测量法、基于几何关系的三角测量法和多项式拟合法。摄影测量法可以进一步分为伪相机法、逆向相机法和光平面法。从误差扩散、对投影仪标定的依赖性、精密辅助标定装置、操作复杂度等方面对上述标定方法进行了对比。指出标定方法的研究趋势是从实验室方法向现场标定技术的转变,要求标定装置简单、标定过程便捷、标定时间快速且精度高。Abstract: Structured light measurement is widely used in various areas due to non-contact, high speed, high measurement accuracy and low cost. The measurement accuracy of structured light measurement system depends on the calibration accuracy. The existing calibration methods were reviewed including the photogrammetry based on matrix transformation, geometry-based triangulation, and polynomial method. Photogrammetry can be further divided into inverse camera, pseudo-camera, and light-stripe plane. All the calibration methods were compared in the view of error propagation, dependence on projector calibration, precise auxiliary calibration gauge, and operation complexity. It is pointed out that the trend of calibration method is from laboratory to factory techniques, which require simple calibration device, convenient calibration process, fast calibration and high calibration precision.
-
Keywords:
- measurement and metrology /
- structured light /
- calibration /
- error
-
-
[1] WANG L, BO M, GAO J, et al. Fast 3-D surface information acquisition based on smart camera. Laser Technology, 2006, 30(6): 657-660(in Chinese).
[2] GAO Sh Y, YANG Y Q, YANG K Zh. Defect detection of laser welding seamof unequal-thickness blank baed on structured light vision.Laser Technology, 2011, 35(4): 440-443(in Chinese).
[3] ZHANG Q C, SU X Y, ZOU X P. Calibration of 3-D measurement system using multi-sensor with line structured-illuminated laser.Laser Technology, 2005, 29(3): 225-232(in Chinese).
[4] XIAO Y Sh, SU X Y, ZHANG Q C, et al. 3-D surface shape restoration for the breaking surface of dynamic process.Laser Technology, 2006, 30(3): 258-261(in Chinese).
[5] CAO S P, WANG W F, XUE X Ch. Dynamic 3-D shape measurement based on de-interlaced images by Fourier transform.Laser Technology,2013, 37(6):736-741(in Chinese).
[6] CHEN Y J, ZUO W M, WANG K Q, et al. Survey on structured light pattern codification methods.Journal of Chinese Computer Systems, 2010,31(9): 1856-1863(in Chinese).
[7] SALVI J, FERNANDEZ S, PRIBANIC T, et al. A state of the art in structured light patterns for surface profilometry.Pattern Recognition, 2010, 43(8): 2666-2680.
[8] PARK S C, CHANG M. Reverse engineering with a structured light system.Computers & Industrial Engineering, 2009, 57(4):1377-1384.
[9] SHI Y S, LI Zh W, ZHONG K, et al. Structure light 3-D measurement technology and its application in mould & die design and manufacturing.Aeronautical Manufacturing Technology, 2009, 20: 48-50.
[10] ZHANG J Q, ZHENG L. 3-D surface reconstruction of irregular industrial sheetmetal parts based on structure illumination.Geospatial Information, 2004, 2(6): 9-10(in Chinese).
[11] HE Z R, CAI Y B. Experimental research of broken sheet metal surface reconstruction based on structure light.Research and Exploration in Laboratory, 2010, 31(10): 28-32(in Chinese).
[12] WU X Q, FENG L F, HUI Y B, et al. Digital method of cultural relics based on measuring of structured light.Machinery Design & Manufacture, 2009(9):212-214(in Chinese).
[13] XIONG Y Y, CHEN X B, SUN J, et al. Development of three dimensional facial measurement system based on structured light projection.Journal of Shanghai Jiaotong University(Medical Science Edition), 2009, 29(7): 837-841(in Chinese).
[14] LI Z N, CHEN Zh X, WANG L M, et al. A measuring method of soil surface roughness using infrared structured light 3-D technology.Transactions of the Chinese Society of Agricultural Engineering, 2013,29(21):137-142(in Chinese).
[15] LI Q,HE D G,LI X. A study on visual measurement method based on underwater 3-dimension structured light.Journal of Dalian Ocean University, 2012, 27(6): 583-586(in Chinese).
[16] WU L J, LIU G H, LIU X Y, et al. Shiny surfaces measurement based on structured light system.Tool Engineering, 2011,45(3): 88-92(in Chinese).
[17] ZHANG Q C, SU X Y, CAO Y P, et al. Three-dimensional shape measurement for rotating blade using stroboscopic structured illumination. Acta Optica Sinica, 2005,25(2): 207-211(in Chinese).
[18] ZHANG S, HUANG P S. Novel method for structured light system calibration.Optical Engineering, 2006, 45(8): 083601.
[19] LEGARDA-SAENZ R, BOTHE T, JUPTNER W P. Accurate procedure for the calibration of a structured light system. Optical Engineering, 2004, 43(2): 464-471.
[20] LI Z, SHI Y, WANG C, et al. Accurate calibration method for a structured light system. Optical Engineering,2008, 47(5): 053604.
[21] GAO W, WANG L, HUA Y. Flexible calibration of a portable structured light system through surface plane.Acta Automatica Sinica, 2009, 34 (11): 1358-1362(in Chinese).
[22] GAO W, WANG L, HU Z. Flexible method for structured light system calibration.Optical Engineering, 2008, 47(8): 083602.
[23] FALCAO G, HURTOS N, MASSICH J. Plane-based calibration of a projector-camera system.New York,USA:VIBOT Master,2008:9.
[24] HUYNH D Q, OWENS R A, HARTMANN P. Calibrating a structured light stripe system: a novel approach.International Journal of Computer Vision, 1999, 33(1): 73-86.
[25] ZHOU F, ZHANG G. Complete calibration of a structured light stripe vision sensor through planar target of unknown orientations.Image and Vision Computing, 2005, 23(1): 59-67.
[26] YAMAUCHI K, SAITO H, SATO Y. Calibration of a structured light system by observing planar object from unknown viewpoints//Pattern Recognition, 2008 ICPR 19th International Conference.New York,USA:IEEE,2008:1-4.
[27] WEI Z, CAO L, ZHANG G. A novel 1-D target-based calibration method with unknown orientation for structured light vision sensor. Optics & Laser Technology, 2010, 42(4): 570-574.
[28] WEI Zh Q, LI J T, JI X P, et al. A calibration method based on multi-linear structured light.Procedia Engineering, 2010,7:345-351.
[29] XIE Z X, ZHU W T, ZHANG Zh W, et al. A novel approach for the field calibration of line structured-light sensors.Measurement, 2010, 43(2): 190-196.
[30] BOUGUET J Y, PERONA P. 3-D photography on your desk//Computer Vision, Sixth International Conference.New York,USA:IEEE,1998:43-50.
[31] LUO H F, XU J, BINH N H, et al. A simple calibration procedure for structured light system.Optics and Lasers in Engineering, 2014, 57(1): 6-12.
[32] SANSONI G, CAROCCI M, RODELLA R. Calibration and performance evaluation of a 3-D imaging sensor based on the projection of structured light.IEEE Transactions on Instrumentation and Measurement, 2000, 49(3): 628-636.
[33] HU Q, HUANG P S, FU Q, et al. Calibration of a three-dimensional shape measurement system.Optical Engineering, 2003, 42(2): 487-493.
[34] JIA X, ZHANG Z, CAO F, et al. Model and error analysis for coded structured light measurement system.Optical Engineering, 2010, 49(12): 123603.
[35] XU J, XI N, ZHANG C, et al. Real-time 3-D shape inspection system of automotive parts based on structured light pattern.Optics & Laser Technology, 2011, 43(1):1-8.
[36] LEANDRY I, BREQUE C, VALLE V. Calibration of a structured-light projection system: development to large dimension objects.Optics and Lasers in Engineering, 2012, 50 (3): 373-379.
[37] LIU H, SU W H, REICHARD K, et al. Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement.Optics Communications, 2003, 216(1/3): 65-80.
[38] TAVARES P J, VAZ M A. Linear calibration procedure for the phase-to-height relationship in phase measurement profilometry. Optics Communications, 2007, 274(2): 307-314.
[39] ANCHINI R, di LEO G, LI G R C, et al. A new calibration procedure for 3-D shape measurement system based on phase-shifting projected fringe profilometry.IEEE Transactions on Instrumentation and Measurement,2009, 58(5): 1291-1298.
[40] VARGAS J, ANTONIO Q J, JOSE TERRON-LOPEZ M. Flexible calibration procedure for fringe projection profilometry.Optical Engineering, 2007, 46(2): 023601.
[41] XU J, DOUET J, ZHAO J G, et al. A simple calibration method for structured light-based 3-D profile measurement.Optics & Laser Technology, 2013, 48(5): 187-193.
-
期刊类型引用(25)
1. 李晓天,陈青山,王艳林,刘力双. 2维超大行程快反镜的分段非线性拟合标定. 激光技术. 2025(01): 87-91 . 本站查看
2. 张美航,张华,鄢威. 结构光自标定方法综述. 传感器与微系统. 2023(02): 1-4+12 . 百度学术
3. 刘威,张旭,刘少丽,刘检华,樊思哲,黄浩. 基于相位—高度映射的简易条纹投影测量模型和标定方法. 计算机集成制造系统. 2023(02): 474-486 . 百度学术
4. 张志俊,吴庆阳,邓亦锋,蒋逸凡,郑国梁,翟剑庞. 基于霍夫变换的结构光场3维成像方法. 激光技术. 2023(04): 492-499 . 本站查看
5. 杜连续,金永. 小波变换轮廓术测量精度影响因素的研究. 机械与电子. 2022(03): 13-16 . 百度学术
6. 雷经发,陈志强,张淼,孙虹,李永玲. 基于规则化条形图的相位展开方法. 光电子·激光. 2020(04): 434-440 . 百度学术
7. 陈宇,李钰,陈丽,李志松,郑炜,陈文康,钟平. 卫星天线反射面板热形变面形误差检测方法. 上海航天(中英文). 2020(04): 117-127 . 百度学术
8. 王延明,赵小龙,邢云飞,杨洋,李广年. 基于NDT-ICP的三维形貌自动测量技术研究. 机电信息. 2020(30): 102-103 . 百度学术
9. 葛桂萍,徐永安,范聪聪,梁艳玲. 基于机器视觉的三维测量装置的开发. 实验技术与管理. 2019(06): 162-166 . 百度学术
10. 王琰. 轨道检测系统钢轨图像标定误差试验研究. 铁道建筑. 2019(07): 117-120 . 百度学术
11. 张瑞,焦晓琼. 基于Kinect的真实感动画生成技术研究. 自动化与仪器仪表. 2019(08): 204-207 . 百度学术
12. 万安军,赵勋杰. 拟合阶次对基于多项式拟合的相位—高度映射关系的影响. 光电技术应用. 2018(03): 29-34 . 百度学术
13. 曾海,唐苏明,田野,刘映江,宋展. 基于二值几何编码图案的高精度结构光系统参数标定方法研究. 集成技术. 2018(02): 37-46 . 百度学术
14. 马媛媛,彭凯,杨伟东,高亚新. 随机抽样一致性算法在线结构光视觉测量系统中的应用. 科学技术与工程. 2018(03): 68-73 . 百度学术
15. 王昊,回丙伟,王胜春,王琰,王卫东. 钢轨廓形测量系统平面靶标标定方法研究. 铁道建筑. 2018(09): 114-117 . 百度学术
16. 姚万业,贾昭鑫. 基于线结构光检测的Arduino分拣机械臂. 北京联合大学学报. 2017(04): 49-53 . 百度学术
17. 吴开华,陈强元. 基于平面方程的轮对在线检测标定系统设计. 传感器与微系统. 2017(02): 97-100 . 百度学术
18. 何峰,周亚同,赵翔宇,王帅,张忠伟. 基于机器视觉的条形光学玻璃自动计重切割. 激光与光电子学进展. 2017(07): 255-263 . 百度学术
19. 赵贤凌,刘建生,张华煜,武迎春. 投影仪标定中的相位误差补偿. 激光技术. 2017(05): 697-702 . 本站查看
20. 苏涵,任永杰,杨凌辉,林嘉睿,郭寅. 基于激光三角法的同步扫描形貌测量传感器. 传感技术学报. 2016(12): 1791-1796 . 百度学术
21. 解则晓,迟书凯,王晓敏,潘成成,魏征. 基于共面法的结构光自扫描测量系统参数标定方法. 中国激光. 2016(03): 182-189 . 百度学术
22. 武彦林,全燕鸣,郭清达. 基于局部单应性矩阵的结构光系统标定研究. 科学技术与工程. 2016(13): 186-189+195 . 百度学术
23. 戴诚铭. 多结构光测量技术的应用分析. 数码世界. 2016(12): 82 . 百度学术
24. 丁一飞,王永红,胡悦,黄安琪,但西佐. 样本块匹配光栅投影阶梯标定方法. 中国测试. 2016(08): 7-12 . 百度学术
25. 汤明,达飞鹏,盖绍彦. 基于光栅投影的多摄像机标定方法. 仪器仪表学报. 2016(09): 2149-2155 . 百度学术
其他类型引用(66)
计量
- 文章访问数: 20
- HTML全文浏览量: 0
- PDF下载量: 55
- 被引次数: 91