高级检索

抛物线坐标系非傍轴矢量光束的解及聚焦特性

彭继, 崔执凤, 屈军

彭继, 崔执凤, 屈军. 抛物线坐标系非傍轴矢量光束的解及聚焦特性[J]. 激光技术, 2014, 38(5): 703-708. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.027
引用本文: 彭继, 崔执凤, 屈军. 抛物线坐标系非傍轴矢量光束的解及聚焦特性[J]. 激光技术, 2014, 38(5): 703-708. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.027
PENG Ji, CUI Zhifeng, QU Jun. Solution and focus property of the nonparaxial vector beams in the parabolic coordinates[J]. LASER TECHNOLOGY, 2014, 38(5): 703-708. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.027
Citation: PENG Ji, CUI Zhifeng, QU Jun. Solution and focus property of the nonparaxial vector beams in the parabolic coordinates[J]. LASER TECHNOLOGY, 2014, 38(5): 703-708. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.027

抛物线坐标系非傍轴矢量光束的解及聚焦特性

基金项目: 

国家自然科学基金资助项目(11374015)

详细信息
    作者简介:

    彭继 (1987-),男,硕士研究生,主要从事激光大气传输与光束质量的研究。

    通讯作者:

    屈军

  • 中图分类号: O432

Solution and focus property of the nonparaxial vector beams in the parabolic coordinates

  • 摘要: 为了求解柱坐标系下非傍轴矢量波动方程,得到光束的电场解析表达式,基于轴对称情况下沿角向偏振的电场,将非傍轴近似情况下的矢量波动方程进行了抛物线坐标的转化,利用分离变量法进行了相应求解,并给出了相应的数值计算。结果表明,非傍轴近似情况下,矢量波动方程的解能描述一种光束的电场,该场的解析表达式与合流超几何函数以及梅杰函数的解有关;光束的光强分布与第1类零阶贝塞尔模式光束类似;光束在近光轴处的光强表现为无限大并且沿边缘方向急剧衰减;在焦平面上沿着径向方向光强急剧减小。所得结果对于探究非傍轴近似情况下矢量光束的传输特性有一定的意义。
    Abstract: In order to solve the nonparaxial vector wave equation in the cylindrical coordinates and obtain electric field expression of the beams, based on the electric field along the azimuthal polarization under the axisymmetric circumstance, the vector wave equation under the nonparaxiality similar circumstances was transformed to the parabolic coordinates and was solved appropriately with the separation variables method. The corresponding numerical calculation was made. The results show that the new analytical solution of the nonparaxial vector wave equation is discussed to describe the propagation of a laser beam. The electric field of such a beam is found to be based on the solutions of the confluent hypergeometric function and the Meijer functions. The intensity distribution of beam is similar to the first-class zero-order Bessel beam mode. The intensity of the light beam near the optical axis is nearly infinite, and decays rapidly along the peripheral direction and decreases sharply along the radial direction in the focal plane. The acquired results are of certain significance for exploring the propagation properties of vector beams in case of nonparaxial approximation.
  • [1]

    HAYAZAWA N, SAITO Y, KAWATA S. Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy[J]. Applied Physics Letters, 2004, 85(25): 6239-6241.

    [2]

    ZHANG Zh H, LI Ch G, LI J Zh, et al. Phase compensation in lensless Fourier transform digital holography [J]. Laser Technology, 2013, 37(5): 569-600(in Chinese).

    [3]

    ZHAN Q W. Trapping metallic Rayleigh particles with radial polarization[J]. Optics Express, 2004, 12(15): 3377-3382.

    [4]

    MASAKI M, TERUTAKE H, YASUHIRO T. Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam[J]. Applied Optics, 2009, 48(32): 6143-6151.

    [5]

    SILER M, JAKL P, BRZOBOHATY O, et al. Optical forces induced behavior of a particle in a non-diffracting vortex beam[J]. Optics Express, 2012, 20(22): 24304-24319.

    [6]

    ZHOU P, MA Y X, WANG X L, et al. Average intensity of a partially coherent rectangular flat-topped laser array propagating in a turbulent atmosphere[J]. Applied Optics, 2009, 48(28): 5251-5258.

    [7]

    GE X L, FENG X X, FAN Ch Y. Progress of the study of phase discontinuity of laser propagation through atmosphere[J]. Laser Technology, 2012, 36(4): 485-489(in Chinese).

    [8]

    ZHOU P, LIU Z J, XU X J, et al. Propagation of phase-locked partially coherent flattened beam array in turbulent atmosphere[J]. Optics and Lasers in Engineering, 2009, 47(11): 1254-1258.

    [9]

    ZHU Zh W, SU Zh P. Spectral change of J0-correlated partially coherent flat-topped beam in turbulent atmosphere[J]. Laser Technology, 2012, 36(4): 532-535(in Chinese).

    [10]

    XU H F, CUI Zh F, QU J. Propagation of elegant Laguerre-Gaussian beam in non-Kolmogorov turbulence[J]. Optics Express, 2011, 19(22): 21163-21173.

    [11]

    WANG L, SHEN X J, ZHANG W A, et al. Analysis of spectral propagating properties of Gaussian beam[J]. Laser Technology, 2012, 36(5): 700-703(in Chinese).

    [12]

    XU H F, LUO H, CUI Zh F, et al. Polarization characteristics of partially coherent elegant Laguerre-Gaussian beams in non-Kolmogorov turbulence[J]. Optics and Lasers in Engineering, 2012, 50(5): 760-766.

    [13]

    WANG B, FEI J Ch, CUI Zh F, et al. Reserch of degree of polarization of PCELG beam propagating through a circular aperture[J].Laser Technology, 2013, 37(5): 672-678(in Chinese).

    [14]

    BARREIRO J T, WEI T Ch, KWIAT P G. Remote preparation of single-photon "Hybrid" entangled and vector-polarization states[J]. Physical Review Letters, 2010, 105(3): 030407.

    [15]

    LI X P, CAO Y Y, GU M. Superresolution-focal-volume induced 3.0Tbytes/disk capacity by focusing a radially polarized beam[J]. Optics Letters, 2011, 36(13): 2510-2512.

    [16]

    ZHAN Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

    [17]

    MIGUEL A B, JULIO C G V, SABINO Ch C. Parabolic nondiffracting optical wave fields[J]. Optics Letters, 2004, 29(1): 44-46.

    [18]

    BORN M, WOLF E. Principles of optics [M]. 7th ed. Cambridgeshire,United Kingdom: Cambridge University Press, 1999: 11-19.

    [19]

    DURNIN J, MICELI J J, EBERLY J H. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15): 1499-1501.

    [20]

    KHONINA S N, KOTLYAR V V, SKIDANOV R V, et al. Rotation of microparticles with Bessel beams generated by diffractive elements[J]. Journal of Modern Optics, 2004, 51(14): 2167-2184.

    [21]

    GUTIERREZ-VEGA J C, ITURBE-CASTILLO M D, CHAVEZ-CERDA S. Alternative formulation for invariant optical fields: Mathieu beams[J]. Optics Letters, 2000, 25(20): 1493-1495.

    [22]

    KOGELNIK H, LI T. Laser beams and resonators[J]. Proceedings of the IEEE, 1966, 54(10): 1312-1329.

    [23]

    DUAN K L, LV B D. Application of the Wigner distribution function to complex-argument Hermite- and Laguerre-Gaussian beams beyond the paraxial approximation[J]. Optics & Laser Technology, 2007, 39(1): 110-115.

    [24]

    SESHADRI S R. Self-interaction and mutual interaction of complex-argument Laguerre-Gauss beams[J]. Optics Letters, 2006, 31(5): 619-621.

    [25]

    KOSTENBAUDER A, SUN Y, SIEGMAN A E. Eigenmode expansions using biorthogonal functions: complex-valued Hermite-Gaussians: reply to comment[J]. Journal of the Optical Society of America, 2006,A23(6):1528-1529.

    [26]

    HALL D G. Vector-beam solutions of Maxwell’s wave equation[J]. Optics Letters, 1996, 21(1): 9-11.

    [27]

    XIN J T, GAO Ch Q, LI Ch. Combination of Hermit-Gaussian beams to arbitery order vector beams[J]. Scientia Sinica Physica Mechanica & Astronomica, 2012, 42(10): 1017-1021(in Chinese).

    [28]

    LIM B C, PHUA P B, LAI W J, et al. Fast switchable electro-optic radial polarization retarder[J]. Optics Letters, 2008, 33(9): 950-952.

    [29]

    TIDWELL S C, DENNIS H F, WAYNE D K. Generating radially polarized beams interferometrically[J]. Applied Optics, 1990, 29(15): 2234-2239.

    [30]

    MAURER C, JESACHER A, FURHAPTER S, et al. Tailoring of arbitrary optical vector beams[J]. New Journal of Physics, 2007, 9(3): 78.

    [31]

    WANG X L, DING J P, NI W J, et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Optics Letters,2007,32(24):3549-3551.

    [32]

    KOTLYAR V V, SKIDANOV R V, KHONINA S N, et al. Hypergeometric modes[J]. Optics Letters, 2007, 32(7): 742-744.

    [33]

    KARIMI E,ZITO G, PICCIRILLO B, et al. Hypergeometric-Gaussian modes[J]. Optics Letters, 2007, 32(21): 3053-3055.

    [34]

    KOTIYAR V V, KOVALEV A A, SOIFER V A. Hankel-Bessel laser beams[J]. Journal of the Optical Society of America, 2012,A29(5):741-747.

    [35]

    ABRAMOWITZ M, STEGUN I. Handbook of mathematical functions[M]. 9th ed. New York,USA:Dover Publishing Inc, 1970: 504-510.

计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-10
  • 修回日期:  2013-11-12
  • 发布日期:  2014-09-24

目录

    /

    返回文章
    返回