Optimization of adaptive optical control system based on automatic control theory
-
摘要: 为了满足自适应光学系统实时快速的工作要求,将自动控制理论引入到自适应光学系统中,在不改变系统硬件性能的基础上对系统的控制部分进行了研究。首先,对自适应光学闭环控制系统进行分析,将其模块化并建立相应的数学模型;其次,在自动控制理论基础上设计控制器和相应的控制算法,并分析了控制器的性能;最后,将自动控制理论的控制方法与人眼波前像差校正相结合,使控制算法应用到自适应光学系统波前像差的校正中。结果表明,相对于传统的自适应光学系统控制方法(纯积分控制和比例-积分控制),Smith预补偿控制使自适应光学控制系统具有较高的闭环带宽和较好的动态、稳态控制性能;在模拟人眼波前像差迭代校正过程中,Smith预补偿控制器校正残余像差的快速性最好;在实际人眼动态像差校正中,Smith预补偿控制校正的残余像差值达到最小,有利于自适应光学控制系统优化。Abstract: In order to improve the working speed of adaptive optics as soon as possible, the algorithm of automatic control theory was applied for adaptive optical system without changing the characteristics of the hardware. After analyzing the close-loop control system of the adaptive optical system, the mathematical model of adaptive optical control was constructed. The controllers and the control algorithms were designed and their characteristics were discussed based on the automatic control theory. After combining the automatic control algorithms and human eye wave-front aberration correction, the control algorithm was applied to the aberration correction. The experiment result shows that the Smith estimating precompensation control has higher closed-loop bandwidth, better dynamic and steady state characteristics than proportion-integration (PI) control and integrator control. The result of the Smith estimating precompensation control has better speed in static aberration correction of the bogus mode eye and makes the root mean square least in the dynamic aberration correction of human eye. So the Smith estimating precompensation control can optimize the control system of adaptive optics.
-
-
[1] TYSON R. Principles of adaptive optics[M].Boca Raton,State of Florida,USA : CRC Press Inc, 2010:177-180.
[2] JIANG W H. Adaptive optical technology[J]. Chinese Journal of Nature, 2006, 28(1):7-13(in Chinese) .
[3] DEMERLE M, MADEC P Y, ROUSSET G. Servo-loop analysis for adaptive optics//Adaptive Optics for Astronomy.Boston, Massachusetts,USA: Kluwer Academic,1994:73.
[4] DESSENNE C, MADEC P Y, ROUSSET G. Optimization of a predictive controller for closed-loop adaptive optics[J]. Applied Optics, 1998, 37(21): 4623-4633.
[5] DESSENNE C, MADEC P Y, ROUSSET G. Modal prediction for closed-loop adaptive optics[J]. Optics Letters, 1997, 22(20): 1535-1537.
[6] CORREIA C, RAYNAUD H F, KULCSR C, et al. Minimum-variance control for astronomical adaptive optics with resonant deformable mirrors[J]. European Journal of Control, 2011, 17(3): 222-236.
[7] YANG X X, WANG J L, MENG H R. Control algorithm design and simulation for adaptive optics system[J]. Optics & Optoelectronic Technology, 2012, 10(2): 25-31 (in Chinese) .
[8] YAN Zh J, LI X Y, RAO Ch H. Numerical simulation of a prediction control algorithm for close-loop adaptive optical system[J]. Acta Optica Sinica, 2011, 31(1): 23-31 (in Chinese) .
[9] HU Sh S. Automatic control theory[M]. Beijing: Science Press, 2007:197-207(in Chinese).
[10] SMITH O J M. A controller to overcome dead time[J]. Instrumentation Systems Automatic Journal, 1959, 6(2): 28-33.
[11] NIU S S, SHEN J X, LIANG Ch, et al. Comparative study on the performance of deformable mirror of NIR based human eye aberration correction system[J]. Spectroscopy and Spectral Analysis, 2012, 32(7): 1795-1800 (in Chinese) .
[12] NIU S, SHEN J, LIANG C, et al. High-resolution retinal imaging with micro adaptive optics system[J]. Applied Optics, 2011, 50(22): 4365-4375.
计量
- 文章访问数: 4
- HTML全文浏览量: 0
- PDF下载量: 8