高级检索

Compton散射下强激光等离子体的辐射阻尼效应

郝东山, 蒋文娟

郝东山, 蒋文娟. Compton散射下强激光等离子体的辐射阻尼效应[J]. 激光技术, 2014, 38(5): 688-691. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.024
引用本文: 郝东山, 蒋文娟. Compton散射下强激光等离子体的辐射阻尼效应[J]. 激光技术, 2014, 38(5): 688-691. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.024
HAO Dongshan, JIANG Wenjuan. Radiation damping effect in high power laser plasma under Compton scattering[J]. LASER TECHNOLOGY, 2014, 38(5): 688-691. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.024
Citation: HAO Dongshan, JIANG Wenjuan. Radiation damping effect in high power laser plasma under Compton scattering[J]. LASER TECHNOLOGY, 2014, 38(5): 688-691. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.024

Compton散射下强激光等离子体的辐射阻尼效应

基金项目: 

河南省基础与前沿技术研究课题资助项目(092300410227)

详细信息
    作者简介:

    郝东山(1949-),男,教授,主要从事激光物理与光纤通信基础理论的研究。E-mail:haodongshan1948@126.com

  • 中图分类号: O536

Radiation damping effect in high power laser plasma under Compton scattering

  • 摘要: 为了研究Compton散射对强激光等离子体中辐射阻尼效应的影响,采用多光子非线性Compton散射模型、相对论理论和洛伦兹变换方法,对Compton散射对不同极化激光在等离子体中产生辐射阻尼效应的影响进行了理论分析和数值计算。提出了将Compton散射光作为等离子体产生辐射阻尼效应的新机制,给出了辐射阻尼满足的修正方程。结果表明,Compton散射使等离子体辐射阻尼效应对电子运动产生重要作用的几率增大,这主要是由于产生这种作用所需的入射激光强度降低,从而使电子频率增大、电场耦合频率增大的缘故。多光子非线性Compton散射光是产生和提高等离子体辐射阻尼效应的一个重要机制。
    Abstract: In order to study effect of Compton scattering on the radiation damping effects in ultra-intense laser plasma, the effect of plasma induced by different polarized lasers was analyzed and calculated based on the model of multi-photon nonlinear Compton scattering, relativity theory and Lorentz transformation. The new mechanism of the radiation damping effect induced by Compton scattering in plasma was presented and the revised equation on the radiation damping effect was put forward. The results show that the probability of electron movement is increased because the required incident laser intensity is reduced and then the electron frequency and the coupling frequency of the electric field are increased. The multi-photon nonlinear Compton scattering is an important mechanism on taking and increasing the radiation damping effect of plasma.
  • [1]

    BULANOV S S,ESIRKEPOV T Z,THOMAS A G R,et al. Schwiinger limit attainability with extreme power lasers[J]. Physical Review Letters,2010,81(10):220407.

    [2]

    CHEN W,FAN C Y,WANG H T,et al. Numerical study on prolonging lifetime of plasma channels generated by ultra-short laser pulses[J]. High Power Laser and Particle Beams,2013,25(4):813-816(in Chinese).

    [3]

    COUAIRON A,MYSROWICZ A. Femtosecond filamentation in transparent media[J]. Physical Reports,2007,33(4):1147-1189.

    [4]

    MEJEAN G,ACKERMANN R,KASPARIAN J,et al. Improved laser triggering and guiding of megavolt discharges with dual fs-ns pulses[J]. Applied Physical Letters,2006,88(2):1101-1105.

    [5]

    XIONG J,LUO B,PAN W,et al. Coupled-mode ana-lysis of modulation instability in frequency-mixing[J]. Chinese Journal Lasers,2005,32(10):1347-1352(in Chinese).

    [6]

    JHA P,MISHRA R K,UPADHYAY A K,et al. Self-focusing of intense laser beam in magnetized plasma[J]. Physics of Plasmas,2006,13(10):103102.

    [7]

    XIONG H,LIU S Q,LIAO J J,et al. Self-focusing of intense laser pulse propagating in underdense plasma[J]. Laser Technology,2010,34(2):272-274(in Chinese).

    [8]

    YU D C,HAO X F,HAO D Sh. Influence of modulation instability induced by Langmuir turbulence in plasma[J]. Nuclear Fusion and Plasma Physics,2013,33 (1):19-24(in Chinese).

    [9]

    HAO D Sh. A new accelerated mechanism of protons in high power laser-plasma[J]. Laser Technology,2012,36(5):653-656(in Chinese).

    [10]

    HAO D Sh. Effect of Compton scattering on prohibited band gaps for 1-D ternary un-magnetized plasma photonic crystals[J]. Laser Technology,2013,37(4):515-518(in Chinese).

    [11]

    HAO X F,LI H Y,HAO D Sh. Characteristic of photonic band gap under Compton scattering[J]. Laser Technology,2012,36(1):107-110(in Chinese).

    [12]

    HAO X F,WEN H,HAO D Sh. Influence of Compton scattering on the modulation instability in un-magnetized plasma[J]. Laser Technology,2012,36(2):572-576(in Chinese).

    [13]

    ZHIDKOV A,KOGA J,SASAKI A,et al. Radiation damping effects on the interaction of ultra-intense plasma pilse with an overdense plasma[J]. Physical Review Letters,2002,88(18):5002-5006.

    [14]

    BULANOV S S,ESIRKEPOV T Z,SAYASHI Y,et al. Extreme field science[J]. Plasma Physical Control Fusion,2011,53(12):4025-4029.

    [15]

    HU Q L,XIAO G L,YU X G. Radiation damping effects in ultra-intense laser-plasma interaction[J]. High Power Laser and Particle Beams,2013,25(6):1379-1382(in Chinese).

    [16]

    CHEN J Z,BAI J M,SONG G J,et al. Effects of laser shot frequency on plasma radiation characteristics[J]. Spectroscopy and Spectral Analysis,2012,32(11):2916-2919(in Chinese).

    [17]

    KONG Q,ZHU L J,WANG J X,et al. Electron dynamics in the extra-intense stationary laser field[J]. Acta Physica Sinica,1999,48(4):650-660(in Chinese).

  • 期刊类型引用(3)

    1. 张科星. 基于深度学习理论的激光图像融合研究. 激光杂志. 2021(04): 121-125 . 百度学术
    2. 杨敏,唐思源,白金牛. 基于光流场模型的医学图像弹性配准. 激光杂志. 2020(07): 104-108 . 百度学术
    3. 曾志宏,张凌,余少勇. 基于区域特征的长波红外偏振图像融合. 激光杂志. 2020(12): 65-69 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  7
  • 被引次数: 3
出版历程
  • 收稿日期:  2013-09-17
  • 修回日期:  2013-10-09
  • 发布日期:  2014-09-24

目录

    /

    返回文章
    返回