高级检索

一种高精度激光器温控电路的设计

陈威, 杨铸, 张为

陈威, 杨铸, 张为. 一种高精度激光器温控电路的设计[J]. 激光技术, 2014, 38(5): 669-674. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.020
引用本文: 陈威, 杨铸, 张为. 一种高精度激光器温控电路的设计[J]. 激光技术, 2014, 38(5): 669-674. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.020
CHEN Wei, YANG Zhu, ZHANG Wei. Design of high precision laser temperature control circuit[J]. LASER TECHNOLOGY, 2014, 38(5): 669-674. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.020
Citation: CHEN Wei, YANG Zhu, ZHANG Wei. Design of high precision laser temperature control circuit[J]. LASER TECHNOLOGY, 2014, 38(5): 669-674. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.020

一种高精度激光器温控电路的设计

详细信息
    作者简介:

    陈威(1989-),男,硕士研究生,现主要从事光收发模块的研究。

    通讯作者:

    杨铸

  • 中图分类号: TP271

Design of high precision laser temperature control circuit

  • 摘要: 为了保持光收发模块发射光波长的稳定,采用半导体热电制冷器对模块中激光器温度进行控制的方法,设计了以热电制冷器为核心的具有高采样精度和快速响应速度的温度控制电路,并进行了理论分析和实验验证,取得了使用本电路的样品模块在应用温度范围内的发射波长变化数据。结果表明,优化后的热电制冷器温控电路具有良好的性能,能够快速准确地控制激光器温度,将发射光波长的变化精确锁定在20pm范围之内。设计完全满足实际应用要求。
    Abstract: In order to maintain the stability of the emission wavelength of an optical transceiver, a thermoelectric cooler was adopted to control the temperature in the transceiver. A temperature control circuit was designed with high sampling precision and fast response speed. Through theoretical analysis and experimental verification, the dependence of emission wavelength on the temperature was obtained in the application temperature range. The results show that the optimized temperature control circuit of thermoelectric cooler has good performance, which can control the temperature of the laser accurately and quickly and lock the emission wavelength within 20pm change range. The design meets the requirements of practical applications fully.
  • [1]

    YAO J, MAO X R. Modern communication network[M]. Beijing: Posts & Telecom Press, 2010:14-16 (in Chinese).

    [2]

    FAN C X, CAO L N. The principles of communication[M]. 6th ed. Beijing: National Defence Industry Press, 2006:6-8(in Chinese).

    [3]

    INTERNATIONAL TELECOMMUNICATION UNION(ITU). ITU-T G.694.1, Spectral grids for WDM applications: DWDM frequency grid[S].Geneva,Switzerland: Telecommunication Standardization Sector of ITU, 2012.

    [5]

    KANG G H, CHEN D Q, ZHANG L. Fundamentals of electronic technology-analog part[M]. 5th ed. Beijing: Higher Education Press, 2006:41-42(in Chinese).

    [6]

    LIU D M, SUN J Q, LU P, et al. Fiber optics[M]. 2nd ed. Beijing: Science Press, 2008:145-148(in Chinese).

    [7]

    MA Y W, WANG J H, BAO C F, et al. Optoelectronics[M]. 2nd ed. Hangzhou: Zhejiang University Press, 2006:28-30(in Chinese).

    [8]

    ZHU Z M. Physical optics[M]. Wuhan: Huazhong University of Science and Technology Press, 2009: 146-155 (in Chinese).

    [9]

    DING G Q, CHEN L Y, LIU R, et al. 10Gb/s EML-TOSA and its application in the long-distance optical communication [J]. Optical Communication Technology, 2012,36(2): 4-7(in Chinese).

    [10]

    LI J S. NTC Thermistor and application analysis[J]. Journal of Jingmen Technical College, 2007,22(6):43-45(in Chinese).

    [11]

    SHI S G, SHI X. The temperature control system based on digital PID and potentiometer[J]. Journal of Wuhan Polytechnic University, 2005, 3(1):31-34(in Chinese).

计量
  • 文章访问数:  6
  • HTML全文浏览量:  1
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-07
  • 修回日期:  2014-01-19
  • 发布日期:  2014-09-24

目录

    /

    返回文章
    返回