高级检索

1064nm和355nm激光扫描刻蚀覆铜板工艺及质量研究

傅茜, 张菲, 蒋明, 段军, 曾晓雁

傅茜, 张菲, 蒋明, 段军, 曾晓雁. 1064nm和355nm激光扫描刻蚀覆铜板工艺及质量研究[J]. 激光技术, 2014, 38(4): 435-440. DOI: 10.7510/jgjs.issn.1001-3806.2014.04.001
引用本文: 傅茜, 张菲, 蒋明, 段军, 曾晓雁. 1064nm和355nm激光扫描刻蚀覆铜板工艺及质量研究[J]. 激光技术, 2014, 38(4): 435-440. DOI: 10.7510/jgjs.issn.1001-3806.2014.04.001
FU Xi, ZHANG Fei, JIANG Ming, DUAN Jun, ZENG Xiaoyan. Study on technology and quality of etching copper clad laminate with 1064nm and 355nm laser[J]. LASER TECHNOLOGY, 2014, 38(4): 435-440. DOI: 10.7510/jgjs.issn.1001-3806.2014.04.001
Citation: FU Xi, ZHANG Fei, JIANG Ming, DUAN Jun, ZENG Xiaoyan. Study on technology and quality of etching copper clad laminate with 1064nm and 355nm laser[J]. LASER TECHNOLOGY, 2014, 38(4): 435-440. DOI: 10.7510/jgjs.issn.1001-3806.2014.04.001

1064nm和355nm激光扫描刻蚀覆铜板工艺及质量研究

基金项目: 

国家自然科学基金重点项目基金资助项目(51135005)

详细信息
    通讯作者:

    段军

  • 中图分类号: 

    TG156.99;TN249

Study on technology and quality of etching copper clad laminate with 1064nm and 355nm laser

  • 摘要: 为了研究不同纳秒激光工艺参量(波长、能量密度、扫描速率)以及铜层厚度对激光刻蚀覆铜板质量(包括刻蚀深度及加工面粗糙度)的影响,采用50W的1064nm红外光纤激光器和10W的355nm紫外固体激光器对覆铜板进行了对比刻蚀实验。通过分析红外、紫外激光刻蚀覆铜板材料的作用机理并对比实验结果得知,采用1064nm红外光纤激光作为激光光源时,设置合适的刻蚀参量,能在完全去除铜箔层的条件下,最大限度地保证环氧树脂基底的完整性;而采用355nm的紫外激光作为激光光源时,因环氧树脂材料对紫外波段激光的高吸收率,以及紫外激光对有机材料的光化学作用,基底材料的损伤难以避免,此外,红外光纤激光具有较高的刻蚀效率。结果表明,综合光纤激光器高稳定性和高集成度的特点,若激光直接刻蚀技术被用于大规模覆铜板的工业加工中,红外光纤激光将更具优势性。
    Abstract: In order to study effect of nanosecond laser processing parameters (such as wavelength, laser fluence, scanning speed) and thickness of the copper layer on the processing quality of laser etching copper clad laminate (including depth and roughness), a 50W 1064nm infrared fiber laser and a 10W 355nm ultraviolet solid-state laser were used for etching the copper clad laminate(CCL) in the comparative experiments. The action mechanisms of infrared laser and ultraviolet laser were analyzed. In the experiments, the 1064nm fiber laser with proper process parameters could etch the copper layer entirely and keep epoxy resin board intact. However, for the 355nm laser, the damage to the organic layer was unavoidable because of the high absorptivity to ultraviolet and photochemical effect. Besides, the infrared fiber laser had a higher processing efficiency. Therefore, with characteristics of high stability and stronger integration, 1064nm infrared fiber laser is more adapt to the large-scale industrial processing of CCL.
  • [1]

    ZHANG H W. The principle and technology of modern printed circuit technology[M]. Beijing: China Machine Press, 2012:10-16(in Chinese).

    [2]

    HIROGAKI T, AOYAMA E, INOUE H, et al. Laser drilling of blind via holes in aramid and glass/epoxy composites for multi-layer printed wiring boards[J]. Applied Science and Manufacturing, 2001, 32(7): 963-968.

    [3]

    WANG X C, LI Z L, CHEN T, et al. 355nm DPSS UV laser cutting of FR4 and BT/epoxy-based PCB substrates[J].Optics and Lasers in Engineering, 2008, 46(5): 404-409.

    [4]

    YU X F, HE W, WANG Sh X, et al. Research on blind via drilling using UV laser[J]. Printed Circuit Information, 2011(4): 62-66(in Chinese).

    [5]

    ZHANG F, ZENG X Y, LI X Y, et al. Laser etching and cutting printed circuit board by 355nm and 1064nm diode pumped solid state lasers[J].Chinese Journal of Lasers, 2008, 35(10): 1637-1643 (in Chinese).

    [6]

    NOWAK M R, ANTON?ZAK A J, KOZIO? P E, et al. Laser prototyping of printed circuit boards [J]. Opto-Electronics Review, 2013, 21(3): 320-325.

    [7]

    ZHANG F, DUAN J,ZENG X Y, et al. Study of blind holes drilling on flexible circuit board using 355nm UV laser[J]. Chinese Journal of Lasers, 2009, 36(12):3143-3148(in Chinese).

    [8]

    YAN M Q, ZHU H H, CHEN Z H. Laser microvia process of printed circuit board [J]. Optics Optoelectronic Technology, 2007, 5(3): 37-40(in Chinese).

    [9]

    CAO Y, LI X Y, CAI Zh X, et al. Research progress of laser micro processing in integrated circuits manufacturing[J]. Optics Optoelectronic Technology, 2006, 4(4): 25-28(in Chinese).

    [10]

    MOORHOUSE C J, VILLARREAL F, WENDLAND J J, et al. Enhanced peak power CO2 laser processing of PCB materials [J]. Photonic Engineering, 2005, 5827(44): 438-445.

    [11]

    YUNG K C, MEI S M, YUE T M. A study of the heat affected zone in the UV YAG laser drilling of GFRP materials[J]. Journal of Materials Processing Technology, 2002,122(2/3): 278-285.

    [12]

    KONG R Z, LIU J Ch, WU Y F, et al. Positioning study in laser corrosion hemisphere platinum resistors[J]. Laser Technology, 2014, 38(3):321-324(in Chinese).

    [13]

    KONG L R, ZHANG F, DUAN J, et al. Research on water-assisted laser etching of alumina ceramics[J]. Laser Technology, 2014, 38(3):330-334(in Chinese).

    [14]

    RYTLEWSKI P, MRZ W,?ENKIEWICZ M, et al. Laser induced surface modification of polylactide[J]. Journal of Materials Processing Technology, 2012, 212(8): 1700-1704.

计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-03
  • 修回日期:  2013-09-25
  • 发布日期:  2014-07-24

目录

    /

    返回文章
    返回