[1] EYYUBOGLU H T. Propagation and coherence properties of higher order partially coherent dark hollow beams in turbulence[J]. Optics Laser Technology, 2008, 40(1): 156-166.
[2] ZHU Z W, XU J C, CANG J. Propagation properties of J0-correlated partially coherent flt-topped beams in a turbulent atmosphere[J]. Laser Technology, 2010, 34(4): 565-568 (in Chinese).
[3] RODRIGO J N M, JULIO C G V. Rytov theory for Helmholtz-Gauss beams in turbulent atmosphere [J]. Optics Express, 2007, 15(25): 16328-16341.
[4] FEI J C, CUI Z F, WANG J S, et al. Propagation characteristics of elegant Laguerre-Gaussian beam passing through a circular aperture in turbulent atmosphere[J]. Laser Technology, 2011, 35(6): 849-853 (in Chinese).
[5] CHU X. The relay propagation of partially coherent cosh-Gaussian-Schell beams in turbulent atmosphere[J]. Applied Physics, 2010,B98(2/3): 573-579.
[6] ZHOU P, MA Y, WANG X, et al. Average spreading of a Gaussian beam array in non-Kolmogorov turbulence[J]. Optics Letters, 2010, 35(7): 1043-1045.
[7] WANG B, FEI J Ch, CUI Zh F, et al. Research of degree of polarization of PCELG beam propagating through a circular aperture[J]. Laser Technology, 2013, 37(5): 672-678 (in Chinese).
[8] CHEN Z, LI C, DING P, et al. Experimental investigation on the scintillation index of vortex beams propagating in simulated atmospheric turbulence[J]. Applied Physics, 2012, B107(2): 469-472.
[9] ALAYINEJAD M, GHAFARY B, KASHANI F D. Analysis of the propagation of flat-topped beam with various beam orders through turbulent atmosphere[J]. Optics and Lasers in Engineering, 2008, 46(1):1-5.
[10] ZHANG R, WANG X Z, CHENG X. Far-zone polarization distribution properties of partially coherent beams with non-uniform source polarization distributions in turbulent atmosphere[J]. Optics Express, 2012, 20(2): 1421-1435.
[11] ZHAO T J, PU Z C. Effects of the aperture on the on-axis polarization properties of partially coherent light[J]. Laser Technology, 2008, 32(4): 424-433 (in Chinese).
[12] JI X L, SHAO X L. Influence of turbulence on the propagation factor of Gaussian Schell-model array beams. Optics Communications, 2010, 283(6): 869-873.
[13] WU J. Propagation of a Gaussian-Schell beam through turbulent media[J]. Journal of Modern Optics, 1990, 37(4): 671-684.
[14] PAN L Zh. Far-field behavior of partially polarized Gaussian Schell-model beams diffracted through an aperture[J]. Acta Optica Sinica, 2006, 26(8): 1250-1255 (in Chinese).
[15] WANG F, CAI Y J, KOROTKOVA O. Partially coherent standard and elegant Laguerre-Gaussian beams of all orders[J]. Optics Express, 2009, 17(25): 22366.
[16] ZHONG Y L, CUI Z F, SHI J P, et al. Propagation properties of partially coherent flat-topped beam array in a turbulent atmosphere [J]. Laser Technology, 2010, 34(4): 542-547(in Chinese).
[17] WU J, BOARDMAN A D. Coherence length of a Gaussian-Schell beam in atmospheric turbulence[J]. Journal of Modern Optics, 1991, 38(7): 1355-1363.
[18] WANG F, CAI Y J. Second-order statistics of a twisted Gaussian Schell-model beam in turbulent atmosphere[J]. Optics Express, 2010, 18(24): 24661-24672.
[19] L B D, LUO Sh R. Beam propagation factor of aperture super-Gaussian beams[J]. Optik, 2001, 112(11): 503-506.
[20] L B D, MA H. A comparative study of elegant and standard Hermite-Gaussian beams[J].Optics Communications, 2000, 174(1): 99-104.
[21] ZHOU P, MA Y, WANG X, et al. Average spreading of a Gaussian beam array in non-Kolmogorov turbulence[J]. Optics Letters, 2012,35(7): 1043-1045.
[22] ZHOU P, LIU Z, XU X, et al. Propagation of coherently combined flattened laser beam array in turbulent atmosphere.Optics Laser Technology, 2009, 41(4): 403-407.
[23] ZHOU P, LIU Z, XU X, et al . Propagation of phase-locked partially coherent flattened beam array in turbulent atmosphere[J]. Optics and Lasers in Engineering, 2009, 47(1): 1254-1258.
[24] EYYUBOGLU H T, BAYKAL Y, CAI Y J. Scintillations of laser array beams[J]. Applied Physics, 2008, B91(2): 265-271.
[25] CAI Y J, HE S. Propagation of various dark hollow beams in a turbulent atmosphere[J]. Optics Express, 2006, 14(4): 1353-1367.
[26] WANG H T, LIU D, ZHOU Z. The propagation of radially polarized partially coherent beam through an optical system in turbulent atmosphere[J]. Applied Physics, 2010,B101(12): 361-369.
[27] JI X L, CHEN X W, L B D.Spreading and directionality of partially coherent Hermite-Gaussian beams propagating through atmosphere turbulence[J]. Journal of the Optics Society of America, 2008, A25(1): 21-28.
[28] KOROTKOVA O, FARWELL N. Effect of oceanic turbulence on polarization of stochastic beams[J]. Optics Communication, 2011, 287(7): 1740-1746.
[29] HANSON F, LASHER M. Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber[J]. Applied Optics, 2010, 49(16): 3224-3230.
[30] TANG M M, ZHAO D M. Propagation of radially polarized beams in the oceanic turbulence[J]. Applied Physics, 2013, B111(4): 665-670.
[31] ZHOU Y, CHEN Q , ZHAO D M. Propagation of astigmatic stochastic electromagnetic beams in oceanic turbulence[J]. Applied Physics, 2013, B114(4): 475-482.
[32] ZHOU Y, HUANG K, ZHAO D M. Changes in the statistical properties of stochastic anisotropic electromagnetic beams propagating through the oceanic turbulence[J]. Applied Physics, 2012,B109(2): 289-294.
[33] TANG M M, ZHAO D M. Spectral changes in stochastic anisotropic electromagnetic beams propagating through turbulent ocean[J]. Optics Communications, 2014, 312(3) : 89-93.
[34] MANDEL L, WOLF E. Optical coherence and quantum optics[M]. Cambridge,UK: Cambridge University Press, 1995: 100-125.
[35] DAN Y Q, ZHANG B. Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere[J]. Optics Express, 2008, 16(20): 15563-15575.
[36] FARWELL N, KOROTKOVA O. Intensity and coherence properties of light in oceanic turbulence[J]. Optics Communication, 2012, 285(6): 872-875.
[37] LU W, LIU L R, SUN J F. Influence of temperature and salinity fluctuations on propagation behaviour of partially coherence in oceanic turbulence[J]. Journal of Optics,2006, A8(12): 1052-1058.
[38] JI X L, EYYUBOGLU H T, BAYKAL Y. Influence of turbulence on the effective radius of curvature of radial Gaussian array beams[J]. Optics Express, 2010, 18(7): 6922-6928.
[39] EYYUBOGLU H T, BAYKAL Y, JI X L. Radius of curvature variations for annular, dark hollow and flat topped beams in turbulence[J]. Applied Physics, 2010,B99(4): 801-807.
[40] GBUR G, WOLF E. The Rayleigh range of Gaussian Schell-model beams[J]. Journal of Modern Optics, 2010, 48(11): 1735-1741.