[1]
|
KITCHING J. Chip-scale atomic devices[J]. Applied Physics Review, 2018, 5(3): 031302. doi: 10.1063/1.5026238 |
[2]
|
TANG J J, ZHAI Y Y, CAO L, et al. High-sensitivity operation of a single-beam atomic magnetometer for three-axis magnetic field mea-surement[J]. Optics Express, 2021, 29(10): 15641-15652. doi: 10.1364/OE.425851 |
[3]
|
HUANG Sh, ZHANG W, XI Q, et al. Fabrication imperfection effect on Si/SiO2-InP micropillar cavities for 1.55μm single photon source[J]. Laser Technology, 2020, 44(5): 532-537(in Chinese) |
[4]
|
CHEN Y C, GRIFFITHS B, WENG L, et al. Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield[J]. Optica, 2019, 6(5): 662-667. doi: 10.1364/OPTICA.6.000662 |
[5]
|
RONG Y Y, JU Zh P, MA Q, et al. Efficient generation of nitrogen vacancy centers by laser writing close to the diamond surface with a layer of silicon nanoballs[J]. New Journal of Physics, 2020, 22(1): 013006. doi: 10.1088/1367-2630/ab6351 |
[6]
|
JU Zh P, LIN J J, SHEN S, et al. Preparations and applications of single color centers in diamond[J]. Advances in Physics, 2021, X6(1): 1858721. |
[7]
|
BARRY J F, SCHLOSS J M, BAUCH E, et al. Sensitivity optimization for NV-diamond magnetometry[J]. Reviews of Modern Physics, 2020, 92(1): 015004. doi: 10.1103/RevModPhys.92.015004 |
[8]
|
THIEL L, WANG Z, TSCHUDIN M A, et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy[J]. Science, 2019, 364(6444): 973-976. doi: 10.1126/science.aav6926 |
[9]
|
XAVIER J, YU D Sh, JONES C, et al. Quantum nanophotonic and nanoplasmonic sensing: towards quantum optical bioscience laboratories on chip[J]. Nanophotonics, 2021, 10(5): 1387-1435. doi: 10.1515/nanoph-2020-0593 |
[10]
|
TIMO W, CHRISTIAN G, FLORIAN F, et al. Determination of the three-dimensional magnetic field vector orientation with nitrogen vacany centers in diamond[J]. Nano Letters, 2020, 20(5): 2980-2985. doi: 10.1021/acs.nanolett.9b04725 |
[11]
|
BIAN K, ZHENG W T, ZHENG X Zh, et al. Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition[J]. Nature Communications, 2021, 12(1): 2457. doi: 10.1038/s41467-021-22709-9 |
[12]
|
SMITH J M, MEYNELL S A, JAYICH A C B, et al. Colour centre generation in diamond for quantum technologies[J]. Nanophotonics, 2019, 8(11): 1889-1906. doi: 10.1515/nanoph-2019-0196 |
[13]
|
MURZIN D, MAPPS D J, LEVADA K, et al. Ultrasensitive magnetic field sensors for biomedical applications[J]. Sensors, 2020, 20(6): 1569. doi: 10.3390/s20061569 |
[14]
|
CASOLA F, VAN DER SAR T, YACOBY A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond[J]. Nature Reviews Materials, 2018, 3(1): 17088. doi: 10.1038/natrevmats.2017.88 |
[15]
|
ASHFOLD M N R, GOSS J P, GREEN B L, et al. Nitrogen in diamond[J]. Chemical Reviews, 2020, 120(12): 5745-5794. doi: 10.1021/acs.chemrev.9b00518 |
[16]
|
SUBEDI S D, FEDOROV V V, PEPPERS J, et al. Laser spectroscopic characterization of negatively charged nitrogen-vacancy (NV-) centers in diamond[J]. Optical Materials Express, 2019, 9(5): 2076-2087. doi: 10.1364/OME.9.002076 |
[17]
|
FRACZEK E, SAVITSKI V G, DALE M, et al. Laser spectroscopy of NV- and NV0 colour centres in synthetic diamond[J]. Optical Materials Express, 2017, 7(7): 2571-2585. doi: 10.1364/OME.7.002571 |
[18]
|
JESKE J, LAU D W, VIDAL X, et al. Stimulated emission from nitrogen-vacancy centres in diamond[J]. Nature Communications, 2017, 8: 14000. doi: 10.1038/ncomms14000 |
[19]
|
NAIR S R, ROGERS L J, VIDAL X, et al. Amplification by stimulated emission of nitrogen-vacancy centres in a diamond-loaded fibre cavity[J]. Nanophotonics, 2020, 9(15): 4505-4518. doi: 10.1515/nanoph-2020-0305 |
[20]
|
ZHAO X, DONG J, GAO W, et al. Progresses of surface enhanced fluorescence[J]. Laser Technology, 2018, 42(4): 511-520(in Chinese). |
[21]
|
ARDAKANI S B, FAEZ R. Tunable spherical graphene surface plasmon amplification by stimulated emission of radiation[J]. Journal of Nanophotonics, 2019, 13(2): 026009. |