[1] KITCHING J. Chip-scale atomic devices[J]. Applied Physics Review, 2018, 5(3): 031302. doi: 10.1063/1.5026238
[2] TANG J J, ZHAI Y Y, CAO L, et al. High-sensitivity operation of a single-beam atomic magnetometer for three-axis magnetic field mea-surement[J]. Optics Express, 2021, 29(10): 15641-15652. doi: 10.1364/OE.425851
[3] HUANG Sh, ZHANG W, XI Q, et al. Fabrication imperfection effect on Si/SiO2-InP micropillar cavities for 1.55μm single photon source[J]. Laser Technology, 2020, 44(5): 532-537(in Chinese)
[4] CHEN Y C, GRIFFITHS B, WENG L, et al. Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield[J]. Optica, 2019, 6(5): 662-667. doi: 10.1364/OPTICA.6.000662
[5] RONG Y Y, JU Zh P, MA Q, et al. Efficient generation of nitrogen vacancy centers by laser writing close to the diamond surface with a layer of silicon nanoballs[J]. New Journal of Physics, 2020, 22(1): 013006. doi: 10.1088/1367-2630/ab6351
[6] JU Zh P, LIN J J, SHEN S, et al. Preparations and applications of single color centers in diamond[J]. Advances in Physics, 2021, X6(1): 1858721.
[7] BARRY J F, SCHLOSS J M, BAUCH E, et al. Sensitivity optimization for NV-diamond magnetometry[J]. Reviews of Modern Physics, 2020, 92(1): 015004. doi: 10.1103/RevModPhys.92.015004
[8] THIEL L, WANG Z, TSCHUDIN M A, et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy[J]. Science, 2019, 364(6444): 973-976. doi: 10.1126/science.aav6926
[9] XAVIER J, YU D Sh, JONES C, et al. Quantum nanophotonic and nanoplasmonic sensing: towards quantum optical bioscience laboratories on chip[J]. Nanophotonics, 2021, 10(5): 1387-1435. doi: 10.1515/nanoph-2020-0593
[10] TIMO W, CHRISTIAN G, FLORIAN F, et al. Determination of the three-dimensional magnetic field vector orientation with nitrogen vacany centers in diamond[J]. Nano Letters, 2020, 20(5): 2980-2985. doi: 10.1021/acs.nanolett.9b04725
[11] BIAN K, ZHENG W T, ZHENG X Zh, et al. Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition[J]. Nature Communications, 2021, 12(1): 2457. doi: 10.1038/s41467-021-22709-9
[12] SMITH J M, MEYNELL S A, JAYICH A C B, et al. Colour centre generation in diamond for quantum technologies[J]. Nanophotonics, 2019, 8(11): 1889-1906. doi: 10.1515/nanoph-2019-0196
[13] MURZIN D, MAPPS D J, LEVADA K, et al. Ultrasensitive magnetic field sensors for biomedical applications[J]. Sensors, 2020, 20(6): 1569. doi: 10.3390/s20061569
[14] CASOLA F, VAN DER SAR T, YACOBY A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond[J]. Nature Reviews Materials, 2018, 3(1): 17088. doi: 10.1038/natrevmats.2017.88
[15] ASHFOLD M N R, GOSS J P, GREEN B L, et al. Nitrogen in diamond[J]. Chemical Reviews, 2020, 120(12): 5745-5794. doi: 10.1021/acs.chemrev.9b00518
[16] SUBEDI S D, FEDOROV V V, PEPPERS J, et al. Laser spectroscopic characterization of negatively charged nitrogen-vacancy (NV-) centers in diamond[J]. Optical Materials Express, 2019, 9(5): 2076-2087. doi: 10.1364/OME.9.002076
[17] FRACZEK E, SAVITSKI V G, DALE M, et al. Laser spectroscopy of NV- and NV0 colour centres in synthetic diamond[J]. Optical Materials Express, 2017, 7(7): 2571-2585. doi: 10.1364/OME.7.002571
[18] JESKE J, LAU D W, VIDAL X, et al. Stimulated emission from nitrogen-vacancy centres in diamond[J]. Nature Communications, 2017, 8: 14000. doi: 10.1038/ncomms14000
[19] NAIR S R, ROGERS L J, VIDAL X, et al. Amplification by stimulated emission of nitrogen-vacancy centres in a diamond-loaded fibre cavity[J]. Nanophotonics, 2020, 9(15): 4505-4518. doi: 10.1515/nanoph-2020-0305
[20] ZHAO X, DONG J, GAO W, et al. Progresses of surface enhanced fluorescence[J]. Laser Technology, 2018, 42(4): 511-520(in Chinese).
[21] ARDAKANI S B, FAEZ R. Tunable spherical graphene surface plasmon amplification by stimulated emission of radiation[J]. Journal of Nanophotonics, 2019, 13(2): 026009.