Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 39 Issue 4
May  2015
Article Contents
Turn off MathJax

Citation:

Turbulence distance of cosh-Gaussian beams in non-Kolmogorov turbulence

  • Received Date: 2014-07-21
    Accepted Date: 2014-11-11
  • To study the spreading of cosh-Gaussian beams propagating through non-Kolmogorov turbulence, extended Huygens-Fresnel principle was used. The expression of turbulence distance zt of partially coherent cosh-Gaussian beams propagating through turbulence was derived. The influence of turbulence parameters (generalized exponent parameter , inner scale l0 and outer scale L0) and beam parameters (coherence parameter and decentered parameter )on turbulence distance was studied theoretically. The results show that turbulence distance zt decreases firstly and then increases with the increase of . When =3.11, zt is minimum. And zt increases with the increase of l0 and , decreases with the increase of L0(just for 3.64) and . The results will be useful for the applications of cosh-Gaussian beams propagating in non-Kolmogorov turbulence.
  • 加载中
  • [1]

    GBUR G, WOLF E. Spreading of partially coherent beams in random media[J]. Journal of the Optical Society of America, 2002, A19(8): 1592-1598.
    [2]

    ZHU Zh W, SU Zh P. Spectral change of J0-correlated partially coherent flat-topped beam in turbulent atmosphere[J]. Laser Technology, 2012,36(4):532-535(in Chinese).
    [3]

    JI X L, ZHANG E T, L B D. Spreading of partially coherent flattened Gaussian beams propagating through turbulent media[J]. Journal of Modern Optics, 2006, 53(12): 1753-1763.
    [4]

    ZHONG Y L, CUI Zh F,SHI J P, et al. Propagation properties of partially coherent flat-topped beam array in a turbulent atmosphere[J]. Laser Technology, 2010,34(4):542-546(in Chinese).
    [5]

    LIU F, JI X L. Turbulence distance of partially coherent cos-Gaussian array beams[J]. Chinese Journal of Lasers, 2011, 38(7):0713001(in Chinese).
    [6]

    RAO C H, JIANG W H, LING N. Spatial and temporal characterization of phase fluctuations in non-Kolmogorov turbulence[J]. Journal of Modern Optics, 2000, 47(6): 1111-1126.
    [7]

    TOSELLI I, ANDREWS L C, PHILLIPS R L, et al. Free space optical system performance for laser beam propagation through non Kolmogorov turbulence for uplink and downlink paths [J].Proceedings of the SPIE, 2007, 6708: 670803.
    [8]

    WU G H, GUO H, YU S, et al. Spreading and direction of Gaussian- Schell model beam through a non-Kolmogorov turbulence [J]. Optics Letters, 2010, 35(5): 715-717.
    [9]

    XU H F, CUI Z F, QU J. Propagation of elegant Laguerre-Gaussian beam in non-Kolmogorov turbulence [J]. Optics Express, 2011, 19(22): 21163-21173.
    [10]

    HE X M, L B D. Propagation properties of partially coherent Hermite-Gaussian beams through non-Kolmogorov turbulence [J]. Chinese Physics, 2011, B20(9): 094210.
    [11]

    DENG J P, JI X L, LU L. Propagation of polychromatic partially coherent decentred laser beams propagating in non-Kolmogorov turbulence [J]. Acta Physica Sinica, 2013, 62(14): 144211(in Chinese).
    [12]

    HUANG Y P, ZENG A P. Propagation properties of Hermite-Gaussian beams in non-Kolmogorov turbulence [J]. Acta Photonica Sinica, 2012, 41(7): 818-823(in Chinese).
    [13]

    LIU L, HAO Zh Q. Propagation of sinh-Gaussian beams in gradient-index medium[J]. Laser Technology, 2013,37(1):126-129(in Chinese).
    [14]

    LI P, KUANG A H. Propagation characteristics of non-paraxial partially coherent Hermite-cosine-Gaussian beams[J]. Laser Technology, 2014,38(1):141-144(in Chinese).
    [15]

    WANG Sh M, LIN Q, JIANG X Q. Cosine-Gauss beam[J]. Acta Photonica Sinica, 1999, 28(4):367-390(in Chinese).
    [16]

    JI X L. Influence of turbulence on the Rayleigh range of partially coherent cosh-Gaussian beams[J]. Acta Physica Sinica,2011, 60(6): 064207(in Chinese).
    [17]

    ANDREWS L C, PHILLIPS R L. Lazer beam propagation through random media [M].Washington DC,USA: SPIE Press, 1998:17-29.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(6399) PDF downloads(439) Cited by()

Proportional views

Turbulence distance of cosh-Gaussian beams in non-Kolmogorov turbulence

  • 1. Department of Basic Medicine, North Sichuan Medical College, Nanchong 637000, China

Abstract: To study the spreading of cosh-Gaussian beams propagating through non-Kolmogorov turbulence, extended Huygens-Fresnel principle was used. The expression of turbulence distance zt of partially coherent cosh-Gaussian beams propagating through turbulence was derived. The influence of turbulence parameters (generalized exponent parameter , inner scale l0 and outer scale L0) and beam parameters (coherence parameter and decentered parameter )on turbulence distance was studied theoretically. The results show that turbulence distance zt decreases firstly and then increases with the increase of . When =3.11, zt is minimum. And zt increases with the increase of l0 and , decreases with the increase of L0(just for 3.64) and . The results will be useful for the applications of cosh-Gaussian beams propagating in non-Kolmogorov turbulence.

Reference (17)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return