[1] 叶振华, 陈奕宇, 张鹏. 碲镉汞红外探测器的前沿技术综述[J]. 红外, 2014, 35(2): 1-8. doi: 10.3969/j.issn.1672-8785.2014.02.001YE Zh H, CHEN Y Y, ZHANG P. Overview of latest technologies of HgCdTe infrared photoelectric detector[J]. Infared, 2014, 35(2): 1-8(in Chinese). doi: 10.3969/j.issn.1672-8785.2014.02.001
[2] 赵俊, 王晓璇, 李雄军, 等. 碲镉汞红外探测器研究进展[J]. 中国科学: 技术科学, 2023, 53(9): 1419-1433.ZHAO J, WANG X X, LI X J, et al. Development of a mercury cadmium telluride infrared detector[J]. Scientia Sinica Technologica, 2023, 53(9): 1419-1433(in Chinese).
[3] 司俊杰. 基于InSb的新型红外探测器材料(特邀)[J]. 红外与激光工程, 2022, 51(1): 79-97.SI J J. Novel InSb-based infrared detector materials (invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 79-97(in Chinese).
[4] 吕衍秋, 鲁星, 鲁正雄, 等. 锑化物红外探测器国内外发展综述[J]. 航空兵器, 2020, 27(5): 1-12.LU Y Q, LU X, LU Zh X, et al. Review of antimonide infrared detector development at home and abroad[J]. Aero Weaponry, 2020, 27(5): 1-12(in Chinese).
[5] 谢修敏, 徐强, 陈剑, 等. 锑化物Ⅱ类超晶格中远红外探测器的研究进展[J]. 激光技术, 2020, 44(6): 688-694. doi: 10.7510/jgjs.issn.1001-3806.2020.06.007XIE X M, XU Q, CHEN J, et al. Research progress on antimonide based type-Ⅱ superlattice mid-and long-infrared detectors[J]. Laser Technology, 2020, 44(6): 688-694 (in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2020.06.007
[6] 王国伟, 徐应强, 牛智川. 新型低维结构锑化物红外探测器的研究与挑战[J]. 中国科学: 物理学力学天文学, 2014, 44(4): 368-389.WANG G W, XU Y Q, NIU Zh Ch. Development of high-performance novel low-dimensional structure antimonide infrared FPAs: Cha-llenges and solutions[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2014, 44(4): 368-389(in Chinese).
[7] 孙童, 关晓宁, 张凡, 等. 基于k·p方法的二类超晶格红外探测器仿真进展[J]. 激光技术, 2023, 47(4): 439-453. doi: 10.7510/jgjs.issn.1001-3806.2023.04.001SUN T, GUAN X N, ZHANG F, et al. Progress in simulation of type-superlattice infrared detectors based on the k·p method[J]. Laser Technology, 2023, 47(4): 439-453(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2023.04.001
[8] ASPLUND C, von WURTEMBERG RM, LANTZ D, et al. Performance of mid-wave T2SL detectors with heterojunction barriers[J]. Infrared Physics & Technology, 2013, 59(6): 22-27.
[9] KIM J, YUAN H, KIMCHI J, et al. HOT MWIR InAs/InAsSb T2SL discrete photodetector development[J]. Proceedings of the SPIE, 2018, 10624: 108-115.
[10] HOGLUND L, ASPLUND C, von WURTEMBERG RM, et al. Ma-nufacturability of type-Ⅱ InAs/GaSb superlattice detectors for infrared imaging[J]. Infrared Physics & Technology, 2017, 84: 28-32.
[11] OGUZ F, ULKER E, ARSLAN Y, et al. High performance 15 μm pitch 640×512 MWIR InAs/GaSb type-Ⅱ superlattice sensors[J]. IEEE Journal of Quantum Electronics, 2021, 58(1): 1-6.
[12] ROBBERTO M, BAGGETT S M, HILBERT B, et al. The infrared detectors for the wide field camera 3 on HST[J]. Proceedings of the SPIE, 2004, 5499: 15-22.
[13] GARNETT J D, FARRIS M C, WONG S S, et al. 2K×2K molecular beam epitaxy HgCdTe detectors for the James Webb Space Telescope NIRCam instrument[J]. Proceedings of the SPIE, 2004, 5499: 35-46.
[14] SINGH A, PAL R. Performance of Hg1-xCdxTe infrared focal plane array at elevated temperature[J]. Semiconductor Science and Technology, 2017, 32(4): 045011.
[15] YUAN H, ZHANG J, KIM J, et al. High performance SWIR HgCdTe 320×256/30 μm FPAs at Teledyne Judson Technologies[J]. Proceedings of the SPIE, 2018, 10766: 109-119.
[16] HOANG A M. Theoretical design and material growth of Type-Ⅱ antimonide-based superlattices for multi-spectral infrared detection and imaging[D]. Evanston, Illinois, USA: Northwestern University, 2016.
[17] KROEMER H. The 6.1 family (InAs, GaSb, AlSb) and its heterostructures: A selective review[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 20(3/4): 196-203.
[18] POTEMSKI M, VIA L, BAUER G E W, et al. Magnetoexcitons in narrow GaAs/Ga1-xAlxAs quantum wells[J]. Physical Review, 1991, B43(18): 14707.
[19] COHEN-ELIAS D, ULIEL Y, KLIN O, et al. Short wavelength infrared InAs/InSb/AlSb type-Ⅱ superlattice photodetector[J]. Infrared Physics & Technology, 2017, 84: 82-86.
[20] FELDMANN J, SATTMANN R, G?BEL E O, et al. Subpicosecond real-space charge transfer in type-Ⅱ GaAs/AlAs superlattices[J]. Physical Review Letters, 1989, 62(16): 1892-1895.
[21] BI H, HAN X, LIU L, et al. Atomic mechanism of interfacial-controlled quantum efficiency and charge migration in InAs/GaSb superlattice[J]. ACS Applied Materials & Interfaces, 2017, 9(32): 26642-26647.
[22] CAI C, ZHAO Y, CHANG F, et al. Understanding the role of interface in advanced semiconductor nanostructure and its interplay with wave function overlap[J]. Nano Research, 2020, 13(6): 1536-1543.
[23] ZHAO Y H, LIU L, BI H, et al. Quantum efficiency optimization by maximizing wave function overlap in type-Ⅱ superlattice photodetectors[J]. Nanoscale, 2017, 9(33): 11833-11840.
[24] MEYER J R, HOFFMAN C A, BARTOLI F J, et al. Type-Ⅱ quantum-well lasers for the mid-wavelength infrared[J]. Applied Physics Letters, 1995, 67(6): 757-759.
[25] WU Y, ZHANG Y, ZHAO Y, et al. Insights into growth-oriented interfacial modulation within semiconductor multilayers[J]. ACS Applied Materials & Interfaces, 2021, 13(23): 27262-27269.
[26] WU Y Y, ZHANG Y H, ZHANG Y, et al. Dual strategy of modulating growth temperature and inserting ultrathin barrier to enhance the wave function overlap in type-Ⅱ superlattices[J]. Nano Research, 2022, 15(6): 5626-5632.
[27] JIANG J K, WANG G W, WU D H, et al. High-performance infrared photodetectors based on InAs/InAsSb/AlAsSb superlattice for 3.5 μm cutoff wavelength spectra[J]. Optics Express, 2022, 30(21): 38208-38215.
[28] NGUYEN B M, HOFFMAN D, WEI Y, et al. Very high quantum efficiency in type-Ⅱ InAs/GaSb superlattice photodiode with cutoff of 12 μm[J]. Applied Physics Letters, 2007, 90(23): 231108.
[29] DELAUNAY P Y, RAZEGHI M. Noise analysis in type-Ⅱ InAs/GaSb focal plane arrays[J]. Journal of Applied Physics, 2009, 106(6): 063110.
[30] TIAN Z B, SCHULER-SANDY T, GODOY S E, et al. High-operating-temperature MWIR detectors using type Ⅱ superlattices[J]. Proceedings of the SPIE, 2013, 8867: 232-240.
[31] DELMAS M, HOGLUND L, IVANOV R, et al. HOT SWaP and HD detectors based on type-Ⅱ superlattices at IRnova[J]. Proceedings of the SPIE, 2022, 12107: 185-192.
[32] HOSTUT M, ERGUN Y. Quantum efficiency contributions for type-Ⅱ InAs/GaSb SL photodetectors[J]. Physica E: Low-dimensional Systems and Nanostructures, 2021, 130: 114721.
[33] SINGH A, PAL R. Performance simulation of unipolar InAs/InAs1-xSbx type-Ⅱ superlattice photodetector[J]. Journal of Electronic Materials, 2018, 47(9): 4653-4662.
[34] WU D, DURLIN Q, DEHZANGI A, et al. High quantum efficiency mid-wavelength infrared type-Ⅱ InAs/InAs1-xSbx superlattice photodiodes grown by metal-organic chemical vapor deposition[J]. Applied Physics Letters, 2019, 114(1): 011104.
[35] NGUYEN B M, BOGDANOV S, POUR S A, et al. Minority electron unipolar photodetectors basedon type Ⅱ InAs/GaSb/AlSb superlattices for very long wavelength infrared detection[J]. Applied Physics Letters, 2009, 95(18): 053519.
[36] CHEN G, HADDADI A, HOANG A M, et al. Demonstration of type-Ⅱ superlattice MWIR minority carrier unipolar imager for high operation temperature application[J]. Optics Letters, 2015, 40(1): 45-47.
[37] ASPLUND C, von WURTEMBERG R M, HOGLUND L. Modeling tools for design of type-Ⅱ superlattice photodetectors[J]. Infrared Physics & Technology, 2017, 84: 21-27.
[38] KAZEMI A, MYERS S, TAGHIPOUR Z, et al. Mid-wavelength infrared unipolar nBp superlattice photodetector[J]. Infrared Physics & Technology, 2018, 88: 114-118.
[39] HOGLUND L, NAUREEN S, IVANOV R, et al. Type-Ⅱ superla-ttices: Hot MWIR production and development at IRnova[J]. Proceedings of the SPIE, 2019, 11002: 166-172.
[40] SOIBEL A, TING D Z, FISHER A M, et al. Temperature dependence of diffusion length and mobility in mid-wavelength InAs/InAsSb superlattice infrared detectors[J]. Applied Physics Letters, 2020, 117(23): 231103.
[41] HAKALA M, PUSKA M J, NIEMINEN R M. Native defects and self-diffusion in GaSb[J]. Journal of Applied Physics, 2002, 91(8): 4988-4994.
[42] SVENSSON S P, DONETSKY D, WANG D, et al. Growth of type-Ⅱ strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization[J]. Journal of Crystal Growth, 2011, 334(1): 103-107.
[43] BELENKY G, KIPSHIDZE G, DONETSKY D, et al. Effects of ca-rrier concentration and phonon energy on carrier lifetime in type-2 SLS and properties of InAs1-XSbX alloys[J]. Proceedings of the SPIE, 2011, 8012: 318-327.
[44] ALSHAHRANI D O, KESARIA M, ANYEBE E A, et al. Emerging type-Ⅱ superlattices of InAs/InAsSb and InAs/GaSb for mid-wavelength infrared photodetectors[J]. Advanced Photonics Research, 2022, 3(2): 2100094.
[45] CHEN K H, XU Z C, LIANG Z M, et al. Molecular beam epitaxy growth and characteristics of the high quantum efficiency InAs/GaSb type-Ⅱ superlattices MWIR detector[J]. Journal of Infrared and Millimeter Waves, 2022, 40(3): 285-289.
[46] ROGALSKI A, MARTYNIUK P, KOPYTKO M, et al. InAsSb-based infrared photodetectors: Thirty years later on[J]. Sensors, 2020, 20(24): 7047.
[47] TING D Z, RAFOL B, KEO S A, et al. InAs/InAsSb type-Ⅱ superlattice mid-wavelength infrared focal plane array with significantly higher operating temperature than InSb[J]. IEEE Photonics Journal, 2018, 10(6): 1-6.
[48] TING D Z, HILL C J, SOIBEL A, et al. Mid-wavelength high ope-rating temperature barrier infrared detector and focal plane array[J]. Applied Physics Letters, 2018, 113 (2): 021101.
[49] ARIYAWANSA G, DURAN J, REYNER C, et al. InAs/InAsSb strained-layer superlattice mid-wavelength infrared detector for high-temperature operation[J]. Micromachines, 2019, 10(12): 806.
[50] DENG G R, CHEN D Q, YANGSh P, et al. High operating tempe-rature pBn barrier mid-wavelength infrared photodetectors and focal plane array based on InAs/InAsSb strained layer superlattices[J]. Optics Express, 2020, 28(12): 17611-17619.
[51] WU, D H, LI J, DEHZANGI A, et al. High performance InAs/InAsSb type-Ⅱ superlattice mid-wavelength infrared photodetectors with double barrier[J]. Infrared Physics & Technology, 2020, 109: 103439.
[52] AROUNASSALAME V, BOUSCHET M, ALCHAAR R, et al. Electro-optical characterizations to study minority carrier transport in Ga-free InAs/InAsSb T2SL XBn midwave infrared photodetector[J]. Proceedings of the SPIE, 2021, 11866: 25-34.
[53] KIM Y H, LEE H J, KIM Y C, et al. Hot InAs/InAsSb nBn detector development for SWaP detector[J]. Proceedings of the SPIE, 2021, 11741: 164-168.
[54] HUANG J L, YAN Sh L, XUE T, et al. Mid-wavelength InAs/InAsSb superlattice photodetector with background limited performance temperature higher than 160 K[J]. IEEE Transactions on Electron Devices, 2022, 69(8): 4392-4395.
[55] GUO Ch Y, SUN Y Y, JIA Zh, et al. Visible-extended mid-infrared wide spectrum detector based on InAs/GaSb type-Ⅱ superlattices (T2SL)[J]. Infrared Physics & Technology, 2018, 89: 147-153.
[56] NORDIN L, PETLURU P, KAMBOJ A, et al. Ultra-thin plasmonic detectors[J]. Optica, 2021, 8(12): 1545-1551.