[1] SEYED I S, HOSSEIN K. A deep neural network approach towards real-time on-branch fruit recognition for precision horticulture[J]. Expert Systems with Applications, 2020, 159(30): 113594.
[2] KANG H W, ZHOU H Y, WANG X, et al. Real-time fruit recognition and grasping estimation for robotic apple harvesting[J]. Sensors, 2020, 20(19): 5670. doi: 10.3390/s20195670
[3] LI Q W, JIA W K, SUN M L, et al. A novel green apple segmentation algorithm based on ensemble U-Net under complex orchard environment[J]. Computers and Electronics in Agriculture, 2021, 180(6): 105900.
[4] ALTAHERI H, ALSULAIMAN M, MUHAMMAD G. Date fruit classification for robotic harvesting in a natural environment using deep learning[J]. IEEE Access, 2019, 7: 117115-117133. doi: 10.1109/ACCESS.2019.2936536
[5] SUN S Sh, JIANG M, LIANG N, et al. Combining an information-maximization-based attention mechanism and illumination invariance theory for the recognition of green apples in natural scenes[J]. Multimedia Tools and Applications, 2020, 79(37/38): 1-27.
[6] YU L Y, XIONG J T, FANG X Q, et al. A litchi fruit recognition method in a natural environment using RGB-D images[J]. Biosystems Engineering, 2021, 204(1): 50-63.
[7] WU G, LI B, ZHU Q B, et al. Using color and 3D geometry features to segment fruit point cloud and improve fruit recognition accuracy[J]. Computers and Electronics in Agriculture, 2020, 174(6): 105475.
[8] 陈超, 齐峰. 卷积神经网络的发展及其在计算机视觉领域中的应用综述[J]. 计算机科学, 2019, 46(3): 69-79.CHEN Ch, QI F. Review on development of convolution neural and its application in computer vision[J]. Computer Science, 2019, 46(3): 69-79(in Chinese).
[9] 董戈. 基于深度学习和图像处理的水果收获机器人抓取系统[J]. 农机化研究, 2021, 43(3): 260-264. doi: 10.3969/j.issn.1003-188X.2021.03.046DONG G. Fruit harvesting robot handling system based on deep learning and image processing[J]. Journal of Agricultural Mechanization Research, 2021, 43(3): 260-264(in Chinese). doi: 10.3969/j.issn.1003-188X.2021.03.046
[10] 翟超飞, 马宇亮, 赵德金. 卷积神经网络水果识别[J]. 南方农机, 2021, 52(10): 59-60. doi: 10.3969/j.issn.1672-3872.2021.10.021ZHAI Ch F, MA Y L, ZHAO D J. Convolutional neural network fruit recognition[J]. China Southern Agricultural Machinery, 2021, 52(10): 59-60(in Chinese). doi: 10.3969/j.issn.1672-3872.2021.10.021
[11] 黄玉富, 朴燕, 张汉辉. 基于多尺度特征融合的水果图像识别算法研究[J]. 长春理工大学学报(自然科学版), 2021, 44(1): 87-94. doi: 10.3969/j.issn.1672-9870.2021.01.013HUANG Y F, PIAO Y, ZHANG H H. Research on fruit image recognition algorithm based on multi-scale feature fusion[J]. Journal of Changchun University of Science and Technology(Natural Science Edition), 2021, 44(1): 87-94(in Chinese). doi: 10.3969/j.issn.1672-9870.2021.01.013
[12] 彭红星, 黄博, 邵园园, 等. 自然环境下多类水果采摘目标识别的通用改进SSD模型[J]. 农业工程学报, 2018, 34(16): 155-162. doi: 10.11975/j.issn.1002-6819.2018.16.020PENG H X, HUANG B, SHAO Y Y, et al. A general improved SSD model for target recognition of multiple types of fruit picking in natural environments[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16): 155-162(in Chinese). doi: 10.11975/j.issn.1002-6819.2018.16.020
[13] 王辉, 张帆, 刘晓凤. 基于DarkNet-53和YOLOv3的水果图像识别[J]. 东北师大学报(自然科学版), 2020, 52(4): 60-65.WANG H, ZHANG F, LIU X F. Fruit image recognition based on DarkNet-53 and YOLOv3[J]. Journal of Northeast Normal University(Natural Science Edition), 2020, 52(4): 60-65(in Chinese).
[14] 钟志峰, 夏一帆, 周冬平, 等. 基于改进YOLOv4的轻量化目标检测算法[J]. 计算机应用, 2021, 40(10): 32-39.ZHONG Zh F, X Y F, ZHOU D P, et al. Lightweight object detection algorithm based on improved YOLOv4[J]. Journal of Computer Applications, 2021, 40(10): 32-39(in Chinese).
[15] 傅隆生, 冯亚利, ELKAMIL Tola, 等. 基于卷积神经网络的田间多簇猕猴桃图像识别方法[J]. 农业工程学报, 2018, 34(2): 205-211.FU L Sh, FENG Y L, ELKAMIL T, et al. Image recognition method of multi-cluster kiwifruit in the field based on convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 205-211(in Chinese).
[16] LI D, HU J, WANG C H, et al. Involution: Inverting the inherence of convolution for visual recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021. New York, USA: IEEE, 2021: 12321-12330.
[17] TAN M X, PANG R M, LE Q V. Efficientdet: Scalable and efficient object detection[C]//CVPR 2020: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2020: 10781-10790.
[18] 熊俊涛, 刘振, 汤林越, 等. 自然环境下绿色柑橘视觉检测技术研究[J]. 农业机械学报, 2018, 49(4): 45-52.XIONG J T, LIU Zh, TANG L Y, et al. Research on visual inspection technology of green citrus in natural environment[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 45-52(in Chinese).
[19] FANG W, WANG L, REN P M. Tinier-YOLO: A real-time object detection method for constrained environments[J]. IEEE Access, 2019, 8: 1935-1944.
[20] 刘春妹, 高洪民, 王学田, 等. 基于深度学习的水果图像识别系统[J]. 微波学报, 2020, 36(s1): 427-430.LIU Ch M, GAO H M, WANG X T, et al. Fruit image recognition system based on deep learning[J]. Journal of Microwaves, 2020, 36(s1): 427-430(in Chinese).
[21] 柳长安, 冯雪菱, 孙长浩, 等. 基于改进麻雀算法的最大2维熵分割方法[J]. 激光技术, 2022, 46(2): 274-282.LIU Ch A, FENG X L, SUN Ch H, et al. Maximum 2-D entropy image segmentation method based on improved sparrow algorithm[J]. Laser Technology, 2022, 46(2): 274-282(in Chinese).
[22] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//CVPR 2018: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2018: 7132-7141.
[23] WANG W H, XIE E Z, SONG X G, et al. Efficient and accurate arbitrary-shaped text detection with pixel aggregation network[C]//ICCV 2019: Proceedings of the IEEE/CVF International Conference on Computer Vision. New York, USA: IEEE, 2019: 8440-8449.