[1] KIM D M, YOO S M. Colorimetric systems for the detection of bacterial contamination: Strategy and applications[J]. Biosensors, 2022, 12(7): 532. doi: 10.3390/bios12070532
[2] WANG M, ZENG J, WANG J Q, et al. Dual-mode aptasensor for simultaneous detection of multiple food-borne pathogenic bacteria based on colorimetry and microfluidic chip using stir bar sorptive extraction[J]. Microchimica Acta, 2021, 188: 244. doi: 10.1007/s00604-021-04902-1
[3] PAN S W, LU H C, LO J I, et al. Using an ATR-FTIR technique to detect pathogens in patients with urinary tract infections: A pilot study[J]. Sensors, 2022, 22: 3638. doi: 10.3390/s22103638
[4] CHIRMAN D, PLESHKO N. Characterization of bacterial biofilm infections with Fourier transform infrared spectroscopy: A review[J]. Applied Spectroscopy Reviews, 2021, 56(8/10): 673-701.
[5] 罗金燕, 杨春兰, 陈磊, 等. 桑细菌性萎蔫病及其病原的红外光谱鉴别[J]. 浙江农林大学学报, 2015, 32(4): 578-584.LUO J Y, YANG Ch L, CHEN L, et al. Detection and identification of mulberry bacterial wilt and its pathogen using Fourier transform infrared spectra[J]. Journal of Zhejiang A & F University, 2015, 32(4): 578-584(in Chinese).
[6] 李滨洲, 陈飞, 郭珍珍, 等. 基质辅助激光解吸电离飞行时间质谱技术分离鉴定生鲜猪肉中沙门氏菌/大肠杆菌类似菌[J]. 食品安全质量检测学报, 2018, 9(4): 717-722. doi: 10.3969/j.issn.2095-0381.2018.04.006LI B Zh, CHEN F, GUO Zh Zh, et al. Isolation and identification of Salmonella/Escherichia coli analogues in raw pork by matrix-assisted laser desorption ionization time-of-flight mass spectrometry[J]. Journal of Food Safety and Quality, 2018, 9(4): 717-722(in Chinese). doi: 10.3969/j.issn.2095-0381.2018.04.006
[7] YAN L, LIU J, MEN S. The biospeckle method for early damage detection of fruits[J]. Modern Physics Letters, 2017, B31(19/21): 1740034.
[8] PIECZYWEK P M, NOWACKA M, DADAN M, et al. Postharvest monitoring of tomato ripening using the dynamic laser speckle[J]. Sensors, 2018, 18: 1093. doi: 10.3390/s18041093
[9] NASSIF R, NADER C A, AFIF C, et al. Detection of golden apples' climacteric peak by laser biospeckle measurements[J]. Applied Optics, 2014, 53(35): 8276-8282. doi: 10.1364/AO.53.008276
[10] KUMARI S, NIRALA A K. Biospeckle image processing algorithms for non-destructive differentiation between maturity and ripe stages of Indian climacteric fruits and evaluation of their ripening period[J]. Laser Physics, 2019, 29(7): 075601. doi: 10.1088/1555-6611/ab0c93
[11] AMARAL I C, BRAGA R A, RAMOS E M, et al. Application of biospeckle laser technique for determining biological phenomena related to beef aging[J]. Journal of Food Engineering, 2013, 119(1): 135-139. doi: 10.1016/j.jfoodeng.2013.05.015
[12] PANDISELVAM R, MAYOOKHA V P, KOTHAKOTA A, et al. Biospeckle laser technique—A novel non-destructive approach for food quality and safety detection[J]. Trends in Food Science & Technology, 2020, 97: 1-13.
[13] GRAU R, VERDÚ S, PÉREZ A J, et al. Laser-backscattering imaging for characterizing pork loin tenderness. Effect of pre-treatment with enzyme and cooking[J]. Journal of Food Engineering, 2021, 299: 110508. doi: 10.1016/j.jfoodeng.2021.110508
[14] THAKUR P S, CHATTERJEE A, RAJPUT L S, et al. Laser biospeckle technique for characterizing the impact of temperature and initial moisture content on seed germination[J]. Optics and Lasers in Engineering, 2022, 153: 106999. doi: 10.1016/j.optlaseng.2022.106999
[15] LI D, XIA Q, YU T, et al. Transmissive-detected laser speckle contrast imaging for blood flow monitoring in thick tissue: From Monte Carlo simulation to experimental demonstration[J]. Light: Science & Applications, 2021, 10: 241.
[16] BRAGA R A, HORGAN G W, ENES A M, et al. Biological feature isolation by wavelets in biospeckle laser images[J]. Computers and Electronics in Agriculture, 2007, 58(2): 123-132. doi: 10.1016/j.compag.2007.03.009
[17] ENGQVIST L, SHEIKH R, DAHLSTRAND U. Laser speckle contrast imaging enables perfusion monitoring of the anterior segment during eye muscle surgery[J]. Journal of American Association for Pediatric Ophthalmology and Strabismus, 2022, 26(3): 155-158. doi: 10.1016/j.jaapos.2022.02.006
[18] 孙奇, 詹浣湫, 曹兆楼, 等. 基于小波能量谱图的生物散斑技术[J]. 激光与光电子学进展, 2023, 60(6): 0611004.SUN Q, ZHAN H Q, CAO Zh L, et al. Laser biospeckle technique based on wavelet energy spectrum maps[J]. Laser & Optoelectronics Progress, 2023, 60(6): 0611004(in Chinese).
[19] 白可, 贺锋涛, 张敏, 等. 基于灰度共生矩阵的激光散斑评价方法[J]. 激光技术, 2016, 40(4): 479-482. doi: 10.7510/jgjs.issn.1001-3806.2016.04.005BAI K, HE F T, ZHANG M, et al. Evaluation method of laser speckle based on gray level co-occurrence matrix[J]. Laser Technology, 2016, 40(4): 479-482(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2016.04.005
[20] 邓博涵, 陈嘉豪, 胡孟晗, 等. 生物散斑技术在水果品质检测中的应用及图像处理算法进展[J]. 激光与光电子学进展, 2019, 56(9): 090003.DENG B H, CHEN J H, HU M H, et al. Application and imaging processing algorithm of biospeckle technology in fruit quality detection[J]. Laser & Optoelectronics Progress, 2019, 56(9): 090003(in Chinese).
[21] 王俊松, 张吴记, 潘志伟, 等. 基于激光散斑数字图像相关法的热应变测量[J]. 激光技术, 2023, 47(2): 171-177. doi: 10.7510/jgjs.issn.1001-3806.2023.02.003WANG J S, ZHANG W J, PAN Zh W, et al. Thermal strain measurement based on laser speckle digital image correlation method[J]. Laser Technology, 2023, 47(2): 171-177(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2023.02.003
[22] STETEFELD J, MCKENNA S A, PATEL T R. Dynamic light scattering: A practical guide and applications in biomedical sciences[J]. Biophysical Reviews, 2016, 8(4): 409-427. doi: 10.1007/s12551-016-0218-6
[23] CAO Zh L, WANG D, KOYNOV K, et al. Diffusion of isolated surface-active molecules at the air/water interface[J]. Colloid and Polymer Science, 2014, 292: 1817-1823. doi: 10.1007/s00396-014-3272-2