[1] |
YANG D, YING Y. Applications of Raman spectroscopy in agricultural products and food analysis: a review[J]. Application Specification Reviews, 2011, 46(7): 539-560. |
[2] |
SCHLÜCKER S. Surface-enhanced Raman spectroscopy: concepts and chemical applications[J]. Angewandte Chemie—International Edition, 2014, 53(19): 4756-4795. doi: 10.1002/anie.201205748 |
[3] |
LU Sh Y, WANG Sh G, LIU W J, et al. Raman spectroscopy in ovarian cancer diagnostics[J]. Spectroscopy and Spectral Analysis, 2017, 37(6):1784-1788(in Chinese). |
[4] |
LI W, FAN X G, WANG X, et al.Design of rapid detection system for urotropine in food based on SERS[J]. Spectroscopy and Spectral Analysis, 2017, 37(6):1778-1783(in Chinese). |
[5] |
DONG J L, HONG M J, ZHENG X Q, et al. Discrimination of human, dog and rabbit blood using Raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(2):459-466(in Chinese). |
[6] |
FAN Y X, LAI K Q, RASCO BARBARA A, et al. Analyses of phosmet residues in apples with surface-enhanced Raman spectroscopy[J]. Food Control, 2014, 37(1):153-157. |
[7] |
OU Y M, PEI L, L K Q, et al. Rapid analysis of multiple sudan dyes in chili flakes using surface-enhanced Raman spectroscopy coupled with Au-Ag core-shell nanospheres[J]. Food Analytical Methods, 2017, 10(3): 565-574. doi: 10.1007/s12161-016-0618-z |
[8] |
LIU Y D, X Q H, WANG H Y, et al. Quantitative study on phosmot residues in navel oranges based on surface enhanced Raman spectra[J]. Laser Technology, 2017, 41(4): 545-548(in Chinese). |
[9] |
SHARMA Y, DHAWAN A. Plasmonic "nano-fingers on nanowires"as SERS substrates[J]. Optics Letters, 2016, 41(9): 2085-2088. doi: 10.1364/OL.41.002085 |
[10] |
HUANG Y, CHEN Y, XUE X T, et al. Unexpected large nanoparticle size of single dimer hotspot systems for broadband SERS enhancement[J]. Optics Letters, 2018, 43(10): 2332-2335. doi: 10.1364/OL.43.002332 |
[11] |
LI R P, LI Y M, HAN J H, et al. In situ SERS monitoring of plasmonic nano-dopants during photopolymerization[J]. Optics Letters, 2017, 42(9): 1712-1715. doi: 10.1364/OL.42.001712 |
[12] |
TIAN Y, ZHANG H, XU L L, et al. Self-assembled monolayers of bimetallic Au/Ag nanospheres with superior surface-enhanced Raman scattering activity for ultra-sensitive triphenylmethane dyes detection[J]. Optics Letters, 2018, 43(4): 635-638. doi: 10.1364/OL.43.000635 |
[13] |
LIN R B, HU L, WANG J Zh, et al. Raman scattering enhancement of a single ZnO nanorod decorated with Ag nanoparticles: synergies of defects and plasmons[J]. Optics Letters, 2018, 43(10): 2244-2247. doi: 10.1364/OL.43.002244 |
[14] |
YE Y, LIU Y, SUN S. Theoretical and experimental study on Raman spectra of ammonium thiocyanate solution[J]. Laser Technology, 2015, 39(2): 280-283(in Chinese). |
[15] |
ZHENG L M, LV Y W, TANG Sh X, et al. Phase growth mechanism of ultra-fine nano-diamond prepared by nanosecond laser[J]. Laser Technology, 2016, 40(1): 25-28(in Chinese). |
[16] |
DENG Y.Comparative study of three SERS active substractes based on AgNPs[D]. Dalian: Dalian University of Technology, 2015: 16-36(in Chinese). |
[17] |
LEE P C, MEISEL D. Adsorption and surface-enhanced Raman of Dyes on silver and gold sols[J]. The Journal of Physical Chemistry, 1982, 86(17): 3391-3395. doi: 10.1021/j100214a025 |
[18] |
JI Sh F, JIANG T L, XU K, et al. FTIR study of the adsorption of water on ultradispersed diamond powder surface[J]. Applied Surface Science, 1998, 133(4): 231-238. |
[19] |
LIU Y, LIU Ch Y, ZHANG Zh Y, et al. The surface enhanced Raman scattering effects of composite nanocrystals of Ag-TiO2[J]. Spectrochimica Acta, 2001, A57(1):35-39. |
[20] |
YANG H D, LIN X, LIU Y L, et al. Preparation of three-dimensional hotpot SERS Substrate with silver nanocubes and its application in detection of pesticide[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 99-103(in Chinese). |
[21] |
LI D W. Controlled synthesis of carbon nanocoils and their application in SERS[D]. Dalian: Dalian University of Technology, 2013: 87-98(in Chinese). |