[1] |
程碑彤, 代千, 谢修敏, 等. 单光子探测器的研究进展[J]. 激光技术, 2022, 46(5): 601-609. doi: 10.7510/jgjs.issn.1001-3806.2022.05.004CHENG B T, DAI Q, XIE X M, et al. Research progress of single-photon detectors[J]. Laser Technology, 2022, 46(5): 601-609(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2022.05.004 |
[2] |
TAFFELLI A, DIRè S, QUARANTA A, et al. MoS2based photodetectors: A review[J]. Sensors, 2021, 21(8): 2758. doi: 10.3390/s21082758 |
[3] |
WADHWA R, AGRAWAL A, KUMAR M. A strategic review of recent progress, prospects and challenges of MoS2-based photodetectors[J]. Journal of Physics, 2021, D55(6): 063002. |
[4] |
KHAN S, KHAN A, AZADMANJIRI J, et al. 2D heterostructures for highly efficient photodetectors: From advanced synthesis to characte-rizations, mechanisms, and device applications[J]. Advanced Photonics Research, 2022, 3(8): 2100342. doi: 10.1002/adpr.202100342 |
[5] |
SHARMA M, AGGARWAL P, SINGH A, et al. Flexible, transpa-rent, and broadband trilayer photodetectors based on MoS2/WS2nanostructures[J]. ACS Applied Nano Materials, 2022, 5(9): 13637-13648. doi: 10.1021/acsanm.2c03394 |
[6] |
HAN X N, WEN P T, ZHANG L, et al. A polarization-sensitive self-powered photodetector based on a P-WSe2/TaIrTe4/N-MoS2 van der Waals heterojunction[J]. ACS Applied Materials & Interfaces, 2021, 13(51): 61544-61554. |
[7] |
WANG H Y, LI Z X, LI D Y, et al. Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors[J]. Advanced Functional Materials, 2021, 31(30): 2103106. doi: 10.1002/adfm.202103106 |
[8] |
QIN Sh R, XU H L, LIU M J, et al. Enhanced visible to near-infrared photodetectors made from MoS2-based mixed-dimensional structures[J]. Applied Surface Science, 2022, 585: 152594. doi: 10.1016/j.apsusc.2022.152594 |
[9] |
WANG T J, ANDREWS K, BOWMAN A, et al. High-performance WSe2 phototransistors with 2D/2D Ohmic contacts[J]. Nano Letters, 2018, 18(5): 2766-2771. doi: 10.1021/acs.nanolett.7b04205 |
[10] |
LI Sh D, HE Zh B, KE I, et al. Ultra-sensitive self-powered photodetector based on vertical MoTe2/MoS2 heterostructure[J]. Applied Physics Express, 2020, 13(1): 015007. doi: 10.7567/1882-0786/ab5e72 |
[11] |
刘剑, 黄典, 贺青, 等. 基于光子数可分辨探测器的单脉冲光子数检测[J]. 激光技术, 2022, 46(1): 58-63. doi: 10.7510/jgjs.issn.1001-3806.2022.01.004LIU J, HUANG D, HE Q, et al. Single pulse photon number detection based on photon number distinguishable detector[J]. Laser Technology, 2022, 46(1): 58-63(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2022.01.004 |
[12] |
ZHANG M R, ZENG G, WU G J, et al. Van der Waals integrated plasmonic Au array for self-powered MoS2 photodetector[J]. Applied Physics Letters, 2023, 122(25): 253503. doi: 10.1063/5.0151147 |
[13] |
XIE Y, ZHANG B, WANG Sh X, et al. Ultrabroadband MoS2 photodetector with spectral response from 445 to 2717 nm[J]. Advanced Materials, 2017, 29(17): 1605972. doi: 10.1002/adma.201605972 |
[14] |
WANG W Zh, ZENG X B, WARNER J, et al. Photoresponse-bias modulation of a high-performance MoS2 photodetector with a unique vertically stacked 2H-MoS2/1T@2H-MoS2 structure[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 33325-33335. |
[15] |
LIN Y Ch, DUMCENCO D O, HUANG Y Sh, et al. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2[J]. Nature Nanotechnology, 2014, 9(5): 391-396. doi: 10.1038/nnano.2014.64 |
[16] |
LIANG B W, CHANG W H, HUANG Ch Sh, et al. Self-powered broadband photodetection enabled by facile CVD-grown MoS2/GaN heterostructures[J]. Nanoscale, 2023, 15: 18233-18240. doi: 10.1039/D3NR03877G |
[17] |
CHEN T X, ZHOU Y Q, SHENG Y W, et al. Hydrogen-assisted growth of large-area continuous films of MoS2 on monolayer graphene[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7304-7314. |
[18] |
HE Q Y, ZENG Zh Y, YIN Z Y, et al. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications[J]. Small, 2012, 8(19): 2994-2999. doi: 10.1002/smll.201201224 |
[19] |
EDA G, YAMAGUCHI H, VOIRY D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Letters, 2011, 11(12): 5111-5116. doi: 10.1021/nl201874w |
[20] |
LIU N, KIM P, KIM J H, et al. Large-area atomically thin MoS2nanosheets prepared using electrochemical exfoliation[J]. ACS Nano, 2014, 8(7): 6902-6910. doi: 10.1021/nn5016242 |
[21] |
PARK M J, PARK K, KO H. Near-infrared photodetector achieved by chemically-exfoliated multilayered MoS2 flakes[J]. Applied Surface Science, 2018, 448: 64-70. doi: 10.1016/j.apsusc.2018.04.085 |
[22] |
SUN B, KONG L X, LI G L, et al. Fully integrated photodetector array based on an electrochemically exfoliated, atomically thin MoS2 film for photoimaging[J]. ACS Applied Electronic Materials, 2022, 4(3): 1010-1018. doi: 10.1021/acsaelm.1c01190 |
[23] |
LIN Zh Y, LIU Y, HALIM U, et al. Solution-processable 2D semiconductors for high-performance large-area electronics[J]. Nature, 2018, 562(7726): 254-258. doi: 10.1038/s41586-018-0574-4 |
[24] |
LI G, SONG Y D, FENG S Y, et al. Improved optoelectronic performance of MoS2 photodetector via localized surface plasmon resonance coupling of double-layered Au nanoparticles with sandwich structure[J]. ACS Applied Electronic Materials, 2022, 4(4): 1626-1632. doi: 10.1021/acsaelm.1c01300 |
[25] |
XIAO P, KIM J H, SEO S. Simple fabrication of photodetectors based on MoS2 nanoflakes and Ag nanoparticles[J]. Sensors, 2022, 22(13): 4695. doi: 10.3390/s22134695 |
[26] |
HUANG Y X, ZOU J, KANG Zh L, et al. Near-infrared photodetectors based on self-assembled plasmonic architecture for computational single-pixel imaging[J]. IEEE Transactions on Electron Devices, 2024, 71(1): 670-675. doi: 10.1109/TED.2023.3338155 |
[27] |
ZOU J, HUANG Y, WANG W, et al. Plasmonic MXene nanoparticle-enabled high-performance two-dimensional MoS2 photodetectors[J]. ACS Applied Materials &Interfaces, 2022, 14(6): 8243-8250. |
[28] |
XU H, ZHU J, ZOU G, et al. Spatially bandgap-graded MoS(2(1-x))Se(2x) homojunctions for self-powered visible-near-infrared phototransistors[J]. Nano-Micro Letters, 2020, 12(1): 26. doi: 10.1007/s40820-019-0361-2 |
[29] |
WANG F, ZHANG T, XIE R Zh, et al. How to characterize figures of merit of two-dimensional photodetectors[J]. Nature Communications, 2023, 14(1): 2224. doi: 10.1038/s41467-023-37635-1 |
[30] |
WADHWA R, KAUR D, ZHANG Y C, et al. Fast response and high-performance UV-C to NIR broadband photodetector based on MoS2/a-Ga2O3heterostructures and impact of band-alignment and charge carrier dynamics[J]. Applied Surface Science, 2023, 632: 157597. doi: 10.1016/j.apsusc.2023.157597 |
[31] |
JING W, DING N, LI L, et al. Ag nanoparticles modified large area monolayer MoS2 phototransistors with high responsivity[J]. Optics Express, 2017, 25(13): 14565-14574. doi: 10.1364/OE.25.014565 |
[32] |
KIM D W, LEEM J Y. Synthesis of interface modified MoS2/ZnO heterostructure via simple hydrothermal method and their enhanced UV photodetection characteristics with ultrafast photoresponse speed[J]. Materials Research Bulletin, 2022, 150: 111767. doi: 10.1016/j.materresbull.2022.111767 |
[33] |
KIM J, KIM S, CHO YS, et al. Solution-processed MoS2 film with functional interfaces via precursor-assisted chemical welding[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12221-12229. |
[34] |
WANG H D, ZENG Y H, MENG F X, et al. Interlayer sensitized van der Waals heterojunction photodetector with enhanced perfor-mance[J]. Nano Research, 2023, 16(7): 10537-10544. doi: 10.1007/s12274-023-5611-4 |