[1] HATAKEEYYAMA K, INUI T. Electromagnetic wave absorber using ferrite absorbing material dispersed with short metal fibers[J]. IEEE Transactions on Magnetics, 1984, 20(5):1261-1263. doi: 10.1109/TMAG.1984.1063424
[2] LIMA U R, NASAR M C, NASAR R S, et al. Ni-Zn nanoferrite for radar-absorbing material[J]. Journal of Magnetism & Magnetic Materials, 2008, 320(10):1666-1670.
[3] MARIN P, CORTINAD, HERNANDO A. Electromagnetic wave absorbing material based on magnetic microwires[J]. IEEE Transactions on Magnetics, 2008, 44(11):3934-3937. doi: 10.1109/TMAG.2008.2002472
[4] HODGKINSON I, WU Q H. Inorganic chiral optical materials[J]. Advanced Materials, 2001, 13(12/13):889-897.
[5] SIONCKE S, VERBIEST T, PERSOOONS A. Second-order nonlinear optical properties of chiral materials[J]. Materials Science and Engineering, 2003, R42(5/6):115-155.
[6] SHIM J M, SHAN S C, KOŠMRLJ A, et al. Harnessing instabilities for design of soft reconfigurable auxetic/chiral materials[J]. Soft Matter, 2013, 9(34):8198-8202. doi: 10.1039/c3sm51148k
[7] WANG J F, QU Sh B, MA H, et al. Tunable planar left-handed metamaterials based on split-ring resonator pairs[C]//IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications. New York, USA: IEEE, 2015: 1-3.
[8] ZHOU H, WANG C, PENG H. A novel double-incidence and multi-band left-handed metamaterials composed of double Z-shaped structure[J]. Journal of Materials Science Materials in Electronics, 2016, 27(3):2534-2544. doi: 10.1007/s10854-015-4056-2
[9] LIU S H, GUO L X, LI J Ch. Left-handed metamaterials based on only modified circular electric resonators[J]. Journal of Modern Optics, 2016, 63(21):2220-2225. doi: 10.1080/09500340.2016.1189008
[10] RYBIN O, SHULGA S. Profile miniaturization and performance improvement of a rectangular patch antenna using magnetic metamaterial substrates[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2016, 26(3):254-261. doi: 10.1002/mmce.v26.3
[11] ZHANG Y, TANG H, YAO Ch, et al. Experiments on adjustable magnetic metamaterials applied in megahertz wireless power transmission[J]. AIP Advances, 2015, 5(1):2075-2084.
[12] KIRIUSHECHKINA S V, KOTEI'NIKOVA O A, RADKOVSKAYA A A. Peculiarities of propagation of electroinductive waves in magnetic metamaterials[J]. Physics of Wave Phenomena, 2017, 25(2):101-106. doi: 10.3103/S1541308X17020042
[13] TARKHANAYAN R H. Effective permittivity and permeability of magnetic metamaterials with periodic array of 2-D electronic layers in quantum hall effect conditions[J]. Journal of Electromagnetic Waves & Applications, 2008, 22(7):1005-1012.
[14] WANG R L, WANG J F, LI Y F, et al. Dual-band suspended stripline filter based on electric metamaterials[J]. Microwave & Optical Technology Letters, 2017, 59(9):2297-2302.
[15] WEI Y Sh, SU AN, XU J Y, et al. Characteristics of dual-channel optical filter in quaternary heterostructure photonic crystal [J]. Laser Technology, 2018, 42(2): 212-212(in Chinese).
[16] ZHANG X D, CHEN N, NIE F K, et al. Dispersion characteristics analysis of photonic crystal fibers based on structure parameters and filling modes [J]. Laser Technology, 2018, 42(1):48-52 (in Chinese).
[17] LANDY N I, SAIUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402
[18] ZHANG H, ZHANG H F, YANG J, et al. Design of an absorber based on plasma metamaterial[J]. Laser Technology, 2018, 42(5): 704-708(in Chinese).
[19] WU D, LIU Y, LI R, et al. Infrared perfect ultra-narrow band absorber as plasmonic sensor [J]. Nanoscale Research Letters, 2016, 11(1):483-491. doi: 10.1186/s11671-016-1705-1
[20] WANG B X, WANG L L, WANG G Z, et al. Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber[J]. IEEE Photonics Technology Letters, 2014, 26(2): 111-114. doi: 10.1109/LPT.2013.2289299
[21] LI L, WANG J, DU H, et al. A band enhanced metamaterial absorber based on E-shaped all-dielectric resonators[J]. AIP Advances, 2015, 5(1): 017147. doi: 10.1063/1.4907050
[22] DING F, CUI Y, GE X, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 2012, 100(10):103506. doi: 10.1063/1.3692178
[23] CHENG Y Zh, WANG Y, NIE Y, et al. Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements[J]. Journal of Applied Physics, 2012, 111(4): 044902. doi: 10.1063/1.3684553
[24] KONG X K, LI H M, BIAN B R, et al. Microwave tunneling in heterostructures with electromagnetically induced transparency-like metamaterials based on solid state plasma[J]. The European Physical Journal Applied Physics, 2016, 74(3): 30801. doi: 10.1051/epjap/2016150452
[25] KONG X K, MO J J, YU Zh Y, et al. Reconfigurable designs for electromagnetically induced transparency in solid state plasma metamaterials with multiple transmission windows[J]. International Journal of Modern Physics, 2016, B30(14): 1650070.
[26] BALANIS C A. Antenna theory: analysis and design[M].Hoboken, New Jersey, USA:John Wiley & Sons, 1982:989-990.