[1] |
HILL K O, FUJII Y, JOHNSON D C, et al. Photosensitivity in optical fiber waveguides:Application to reflection filter fabrication[J]. Applied Physics Letters, 1978, 32(10):647-649. doi: 10.1063/1.89881 |
[2] |
CHU Zh Zh, YOU L B, WANG Q Sh, et al. Development of optical fiber sensing technology for harmful gases detecting[J]. Transducer and Microsystem Technologies, 2016, 35(9):1-4(in Chinese). |
[3] |
PENG G D, CHU P L. Recent research on polymer optical fiber photosensitivity and highly tunable optical fibre Bragg grating[J].Proceedings of the SPIE, 2000, 4110:123-138. doi: 10.1117/12.404773 |
[4] |
JOHNSON I P. Grating deices in polymer optical fibre[D]. Birmingham, UK: Aston University, 2012: 16-44. |
[5] |
XIONG Z, PENG G D, WU B, et al. Highly tunable Bragg gratings in single-mode polymer optical fibers[J]. IEEE Photonics Technology Letters, 1999, 11(3):352-354. doi: 10.1109/68.748232 |
[6] |
HAND D P, RUSSELL P S J. Photoinduced refractive-index changes in germanosilicate fibers[J]. Optics Letters, 1990, 15(2):102-104. doi: 10.1364/OL.15.000102 |
[7] |
POUMELLEC B, GUENOT P, RIANT I, et al. UV induced densification during Bragg grating inscription in Ge:SiO2 preforms[J]. Optical Materials, 1995, 4(4):441-449. doi: 10.1016/0925-3467(94)00114-6 |
[8] |
LEMAIRE P J, ATKINS R M, MIZRAHI V, et al. High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres[J]. Electronics Letters, 1993, 29(13):1191-1193. doi: 10.1049/el:19930796 |
[9] |
YU J M, TAO X M, TAM H Y. Trans-4-stilbenemethanol-doped photosensitive polymer fibers and gratings[J]. Optics Letters, 2004, 29(2):156-158. doi: 10.1364/OL.29.000156 |
[10] |
ZOUBIR A, LOPEZ C, RICHARDSON M, et al. Femtosecond laser fabrication of tubular waveguides in poly (methyl methacrylate)[J]. Optics Letters, 2004, 29(16):1840-1842. doi: 10.1364/OL.29.001840 |
[11] |
LIPPERT T, DICKINSON J T. Chemical and spectroscopic aspects of polymer ablation:special features and novel directions[J]. Chemical Reviews, 2003, 103(2):453-486. doi: 10.1021/cr010460q |
[12] |
WOCHNOWSKI C, METEV S, SEPOLD G. UV-laser-assisted modification of the optical properties of polymethylmethacrylate[J]. Applied Surface Science, 2000, 154:706-711. |
[13] |
CHOI J O, MOORE J A, CORELLI J C, et al. Degradation of poly (methylmethacrylate) by deep ultraviolet, X-ray, electron beam, and proton beam irradiations[J]. Journal of Vacuum Science & Technology:Microelectronics Processing and Phenomena, 1988, B6(6):2286-2289. |
[14] |
SRINIVASAN R, BRAREN B, CASEY K G. Ultraviolet laser ablation and decomposition of organic materials[J]. Pure and Applied Chemistry, 1990, 62(8):1581-1584. doi: 10.1351/pac199062081581 |
[15] |
KADA T, HIRAMATSU T, OGINO K, et al. Fabrication of refractive index profiles in poly (methyl methacrylate) using ultraviolet rays irradiation[J]. Japanese Journal of Applied Physics, 2002, 41(2R):876-880. |
[16] |
BOWDEN M J, CHANDROSS E A, KAMINOW I P. Mechanism of the photoinduced refractive index increase in polymethyl methacrylate[J]. Applied Optics, 1974, 13(1):112-117. doi: 10.1364/AO.13.000112 |
[17] |
TOMLINSON W J, KAMINOW I P, CHANDROSS E A, et al. Photoinduced refractive index increase in poly (methylmethacrylate) and its applications[J]. Applied Physics Letters, 1970, 16(12):486-489. doi: 10.1063/1.1653076 |
[18] |
ROBERTSON C G, WILKES G L. Refractive index:a probe for monitoring volume relaxation during physical aging of glassy polymers[J]. Polymer, 1998, 39(11):2129-2133. doi: 10.1016/S0032-3861(97)00508-9 |
[19] |
KOPIETZ M, LECHNER M D, STEINMEIER D G, et al. Light-induced refractive index changes in polymethylmethacrylate (PMMA) blocks[J]. Polymer Photochemistry, 1984, 5(1/6):109-119. |
[20] |
ESTLER R C, NOGAR N S. Mass spectroscopic identification of wavelength dependent UV laser photoablation fragments from polymethylmethacrylate[J]. Applied Physics Letters, 1986, 49(18):1175-1177. doi: 10.1063/1.97406 |
[21] |
GEORGIOU S, KAUTEK W, KRUGER J, et al. Polymers and light[M]. Heidelberg, Germany:Springer Science & Business Media, 2004:20-40. |
[22] |
LEKISHVILI N, NADAREISHVILI L, ZAIKOV G, et al. Polymers and polymeric materials for fiber and gradient optics[M]. Boca Raton, USA:Chemical Rubber Company Press, 2002:15-50. |
[23] |
LIU H Y, LIU H B, PENG G D, et al. Observation of type Ⅰ and type Ⅱ gratings behavior in polymer optical fiber[J]. Optics Communications, 2003, 220(4):337-343. |
[24] |
KALLI K, DOBB H L, WEBB D J, et al. Development of an electrically tuneable Bragg grating filter in polymer optical fibre operating at 1.55μm[J]. Measurement Science and Technology, 2007, 18(10):3155. |
[25] |
SCHAFFER C B. Interaction of femtosecond laser pulses with transparent materials[D]. Cambridge, USA: Harvard University, 2001: 27-29. |
[26] |
BAUM A, SCULLY P J, BASANTA M, et al. Photochemistry of refractive index structures in poly (methyl methacrylate) by femtosecond laser irradiation[J]. Optics Letters, 2007, 32(2):190-192. doi: 10.1364/OL.32.000190 |
[27] |
SCULLY P J, JONES D, JAROSZYNSKI D A. Femtosecond laser irradiation of polymethylmethacrylate for refractive index gratings[J]. Journal of Optics, 2003, A5(4):S92-S96. |
[28] |
LIU H Y, PENG G D, CHU P L. Polymer fiber Bragg gratings with 28dB transmission rejection[J]. IEEE Photonics Technology Letters, 2002, 14(7):935-937. doi: 10.1109/LPT.2002.1012390 |
[29] |
JIN Zh K. Peparation of the grating structure in polymer optical fiber by femtosecond laser[D].Changchun: Jilin University, 2012: 40-54(in Chinese). |
[30] |
BUNDALO I L, NIELSON K, MARKOS C, et al. Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes[J]. Optics Express, 2014, 22(5):5270-5276. doi: 10.1364/OE.22.005270 |
[31] |
KOWAL D, STATKIEWICZ-BARABACH G, MERGO P, et al. Microstructured polymer optical fiber for long period gratings fabrication using an ultraviolet laser beam[J]. Optics Letters, 2014, 39(8):2242-2245. doi: 10.1364/OL.39.002242 |
[32] |
KOWAL D, STATKIEWICZ-BARABACH G, MERGO P, et al. Inscription of long period gratings using an ultraviolet laser beam in the diffusion-doped microstructured polymer optical fiber[J]. Applied Optics, 2015, 54(20):6327-6333. doi: 10.1364/AO.54.006327 |
[33] |
HU X, PUN C F J, TAM H Y, et al. Tilted Bragg gratings in step-index polymer optical fiber[J]. Optics Letters, 2014, 39(24):6835-6838. doi: 10.1364/OL.39.006835 |
[34] |
BUNDALO I L, NIELSEN K, BANG O. Angle dependent Fiber Bragg grating inscription in microstructured polymer optical fibers[J]. Optics Express, 2015, 23(3):3699-3707. doi: 10.1364/OE.23.003699 |
[35] |
SÁEZ-RODRÍGUEZ D, NIELSEN K, RASMUSSEN H K, et al. Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core[J]. Optics Letters, 2013, 38(19):3769-3772. doi: 10.1364/OL.38.003769 |
[36] |
HU X, PUN C F J, TAM H Y, et al. Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber[J]. Optics Express, 2014, 22(15):18807-18817. doi: 10.1364/OE.22.018807 |
[37] |
OLIVEIRA R, BILRO L, NOGUEIRA R. Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds[J]. Optics Express, 2015, 23(8):10181-10187. doi: 10.1364/OE.23.010181 |
[38] |
KOERDT M, KIBBEN S, HESSELBACH J, et al. Fabrication and characterization of Bragg gratings in a graded-index perfluorinated polymer optical fiber[J]. Procedia Technology, 2014, 15:138-146. doi: 10.1016/j.protcy.2014.09.065 |
[39] |
KOERDT M, KIBBEN S, BENDIG O, et al. Fabrication and characterization of Bragg gratings in perfluorinated polymer optical fibers and their embedding in composites[J]. Mechatronics, 2016, 34:137-146. doi: 10.1016/j.mechatronics.2015.10.005 |
[40] |
BUNDALO I L, LWIN R, LEON-SAVAL S, et al. All-plastic fiber-based pressure sensor[J]. Applied Optics, 2016, 55(4):811-816. doi: 10.1364/AO.55.000811 |
[41] |
LUO Y, ZHANG Q, LIU H, et al. Gratings fabrication in benzildimethylketal doped photosensitive polymer optical fibers using 355nm nanosecond pulsed laser[J]. Optics Letters, 2010, 35(5):751-753. doi: 10.1364/OL.35.000751 |
[42] |
CHEN R. Study on sensing characteristics of polymer long period fiber gratings[D]. Hefei: University of Science and Technology of China, 2006: 48-54(in Chinese). |
[43] |
LACRAZ A, POLIS M, THEODOSIOU A, et al. Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber[J]. IEEE Photonics Technology Letters, 2015, 27(7):693-696. doi: 10.1109/LPT.2014.2386692 |
[44] |
STAJANCA P, LACRAZ A, KALLI K, et al. Strain sensing with femtosecond inscribed FBGs in perfluorinated polymer optical fibers[C]//Brussels, Belgium: SPIE Photonics Europe, 2016: 989911. |
[45] |
YUAN W, KHAN L, WEBB D J, et al. Humidity insensitive TOPAS polymer fiber Bragg grating sensor[J]. Optics Express, 2011, 19(20):19731-19739. doi: 10.1364/OE.19.019731 |
[46] |
MARKOS C, STEFANI A, NIELSEN K, et al. High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees[J]. Optics Express, 2013, 21(4):4758-4765. doi: 10.1364/OE.21.004758 |
[47] |
WOYESSA G, FASANO A, STEFANI A, et al. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors[J]. Optics Express, 2016, 24(2):1253-1260. doi: 10.1364/OE.24.001253 |
[48] |
FASANO A, WOYESSA G, STAJANCA P, et al. Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors[J]. Optical Materials Express, 2016, 6(2):649-659. doi: 10.1364/OME.6.000649 |
[49] |
LIU H Y, PENG G D, CHU P L, et al. Photosensitivity in low-loss perfluoropolymer (CYTOP) fibre material[J]. Electronics Letters, 2001, 37(6):347-348. doi: 10.1049/el:20010216 |
[50] |
CHENG X Sh. Fabrication and sensing characteristics of polymer bragg fiber gratings[D]. Hefei: University of Science and Technology of China, 2011: 31-84(in Chinese). |
[51] |
LIU H Y, PENG G D, CHU P L. Thermal tuning of polymer optical fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 2001, 13(8):824-826. doi: 10.1109/68.935816 |
[52] |
STEFANI A, YUAN W, MARKOS C, et al. Narrow bandwidth 850nm fiber Bragg gratings in few-mode polymer optical fibers[J]. IEEE Photonics Technology Letters, 2011, 23(10):660-662. doi: 10.1109/LPT.2011.2125786 |
[53] |
STEFANI A, ANDRESEN S, YUAN W, et al. High sensitivity polymer optical fiber-Bragg-grating-based accelerometer[J]. IEEE Photonics Technology Letters, 2012, 24(9):763-765. doi: 10.1109/LPT.2012.2188024 |
[54] |
ZHANG W, WEBB D J. PMMA based optical fiber bragg grating for measuring moisture in transformer oil[J]. IEEE Photonics Technology Letters, 2016, 28(21):2427-2430. doi: 10.1109/LPT.2016.2598145 |
[55] |
LIU H Y, PENG G D, CHU P L. Thermal stability of gratings in PMMA and CYTOP polymer fibers[J]. Optics Communications, 2002, 204(1):151-156. |