Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 48 Issue 2
Mar.  2024
Article Contents
Turn off MathJax

Citation:

Programmable multi-pulse green laser

  • Corresponding author: WU Lixia, wulixia@fjirsm.ac.cn
  • Received Date: 2023-03-23
    Accepted Date: 2023-04-11
  • Programmable multi-pulse green laser was developed to satisfy the application requirements of a planer laser induced fluorescence and velocity interferometer system for any reflector. In the process of amplification, because the front edge gain of the laser pulse was fast and the back edge gain was slow, the laser pulse waveform was distorted. Adopting light intensity programmable technology, input the long pulse voltage waveform into an arbitrary waveform generator and load it onto the electro-optic modulator. In order to control the output light intensity in the time domain and output multiple pulses at the same time, the software was used to edit the long pulse voltage waveform according to the feedback of the output laser waveform. The results indicate that the waveform distortion during the amplification process is corrected. The following green laser square wave pulses are obtained: Single pulse with 110 ns pulse width; double pulses with 5 μs pulse interval and 50 ns pulse width; three pulses with pulse widths of 40 ns, 50 ns and 60 ns and pulse interval of 2 μs and 1 μs respectively. Of course, if necessary, by editing the long pulse voltage waveform, we can also get pulses of other parameters so as to obtain a laser with adjustable pulse number, waveform, pulse width, and pulse interval. This study provides a reference for planar laser-induced fluorescence technology and reflector velocity interferometer system.
  • 加载中
  • [1] 倪旭翔, 胡凯. 脉冲串互相关方法在远程激光测距中的应用[J]. 光学学报, 2012, 32(11): 1112005.

    NI X X, HU K. Multi-pulse train cross-correlation method in remote laser ranging[J]. Acta Optica Sinica, 2012, 32(11): 1112005 (in Chinese).
    [2] 钟声远, 李松山. 脉冲串激光测距技术研究[J]. 激光与红外, 2006, 36(9): 797-799.

    ZHONG Sh Y, LI S Sh. Study of multi-pulsed laser ranging technology[J]. Laser & Infrared, 2006, 36(9): 797-799(in Chinese).
    [3] 李麦亮, 周进, 耿辉, 等. 平面激光诱导荧光技术在超声速燃烧中的应用[J]. 推进技术, 2004, 25(4): 381-384. doi: 10.3321/j.issn:1001-4055.2004.04.022

    LI M L, ZHOU J, GENG H, et al. Application of PLIF in research on supersonic combustion[J]. Journal of Propulsion Technology, 2004, 25(4): 381-384(in Chinese). doi: 10.3321/j.issn:1001-4055.2004.04.022
    [4] 李钢, 徐燕骥, 穆克进, 等. 平面激光诱导荧光技术在交错电极介质阻挡放电等离子体研究中的初步应用[J]. 物理学报, 2008, 57(10): 6444-6449.

    LI G, XU Y J, MU K J, et al. Application of planar laser induced fluorescence in the investigation of the stagger electrode dielectric barrier discharge plasma[J]. Acta Physica Sinica, 2008, 57(10): 6444-6449(in Chinese).
    [5] 张笑博, 吴迪, 朱岱寅. 基于深度学习的VISAR多运动目标检测[J]. 雷达科学与技术, 2022, 20(5): 513-519.

    ZHANG X B, WU D, ZHU D Y. Moving target shadow detection approach for VISAR using deep learning and multi-object tracking algorithm[J]. Radar Science and Technology, 2022, 20(5): 513-519(in Chinese).
    [6] 舒桦, 傅思祖, 黄秀光, 等. 神光Ⅱ装置上速度干涉仪的研制及应用[J]. 物理学报, 2012, 61(11): 221-231.

    SHU H, FU S Z, HUANG X G, et al. Line-imaging optical recording velocity interferometer at "Shenguang-Ⅱ" laser facility and its applications[J]. Acta Physica Sinica, 2012, 61(11): 221-231(in Chinese).
    [7]

    HUANG L, ZHANG Y Sh, CUI Y D. Optomechanical-organized multipulse dynamics in ultrafast fiber laser[J]. Chinese Physics, 2021, B30(11): 114203.
    [8]

    HUANG Sh Sh, WANG Y G, YAN P G, et al. Observation of multipulse bunches in a graphene oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion[J]. Applied Physics, 2014, B116(4): 939-946.
    [9]

    WANG H F, LUAN W M, YAN X N. Generation of adjustable femtosecond double pulses by diffraction of a chirped femtosecond pulse from volume Bragg gratings[J]. Optik, 2021, 247: 167871. doi: 10.1016/j.ijleo.2021.167871
    [10] 季凯俊, 程学武, 叶晖, 等. 多脉冲激光延时可调的组合发射装置: 202110636830.3[P]. 2021-09-14.

    JI K J, CHENG X W, YE H, et al. A combined emission device with adjustable delay for multi pulse laser: 202110636830.3[P]. 2021-09-14(in Chinese).
    [11] 潘云龙. 皮秒激光多脉冲技术的研究[D]. 北京: 北京工业大学, 2014: 1-51.

    PAN Y L. Picosecond laser multiple pulse thchnology[D]. Beijing: Beijing University of Technology, 2014: 1-51(in Chinese).
    [12] 陈长水, 赵柯, 王佩琳, 等. 双脉冲、双波长巨脉冲Cr∶LiSAF激光器[J]. 中国激光, 2001, 28(4): 298-230. doi: 10.3321/j.issn:0258-7025.2001.04.003

    CHENG Ch Sh, ZHAO K, WANG P L, et al. Generation of dual wavelength and dual pulse in a Q-switched Cr∶LiSAF laser[J]. Ch-inese Journal of Lasers, 2001, 28(4): 298-230(in Chinese). doi: 10.3321/j.issn:0258-7025.2001.04.003
    [13] 来建成, 郭嘉民, 李振华, 等. 脉冲周期和序列长度可控的多脉冲激光序列发生装置: 201910829728.8[P]. 2020-02-04.

    LAI J Ch, GUO J M, LI Zh H, et al. A multi pulse laser sequence generator with controllable pulse period and sequence length: 201910829728.8[P]. 2020-02-04(in Chinese).
    [14] 段加林, 李旭东, 武文涛, 等. LD泵浦Nd∶YAG 1.06 μm脉冲串激光及放大研究[J]. 红外与激光工程, 2019, 48(1): 0105003.

    DUAN J L, LI X D, WU W T, et al. Research on LD pumped 1.06 μm burst-mode laser and the amplification systems[J]. Infrared and Laser Engineering, 2019, 48(1): 0105003(in Chinese).
    [15]

    LI Y, JIN L, DAI W Ch, et al. Study of an acousto-optic Q-switched doulble pulse output Pr∶YLF all solid-state laser[J]. Laser Physics, 2020, 30(12): 125002. doi: 10.1088/1555-6611/abc473
    [16] 杜鹏远. ICF高功率KRF准分子自发辐射放大脉冲整形及稳定性研究[D]. 哈尔滨: 哈尔滨工业大学, 2016: 1-107.

    DU P Y. Shaping and stability of amplified spontaneous emission pulse of high power KRF excimer for inertial confinement fusion[D]. Harbin: Harbin Institute of Technology, 2016: 1-107(in Ch-inese).
    [17] 叶荣, 吴显云, 谭航, 等. 激光脉冲整形装置及激光脉冲整形系统: 201720133213.0[P]. 2017-09-22.

    YE R, WU X Y, TANG H, et al. Laser pulse shaping device and laser pulse shaping system: 201720133213.0[P]. 2017-09-22(in Chinese).
    [18] 何润. 超短激光脉冲的时域整形与调制算法研究[D]. 北京: 北京工业大学, 2012: 1-56.

    HE R. Study on ultrashort laser pulse shaping in time-domain and modulation algorithm[D]. Beijing: Beijing University of Technology, 2012: 1-56(in Chinese).
    [19] 程坤. 基于多光子吸收效应的激光脉冲平滑技术研究[D]. 绵阳: 中国工程物理研究院, 2012: 1-110.

    CHENG K. Research on pulse smoothing technology based on multi-photon absorption effect[D]. Mianyang: China Academy of Engineering Physics, 2012: 1-110(in Chinese).
    [20] 林平, 刘百玉, 缑永胜, 等. 基于半导体激光器的脉冲整形技术[J]. 红外与激光工程, 2014, 43(1): 103-107.

    LIN P, LIU B Y, GOU Y Sh, et al. Laser pulse shaping technology based on semiconductor laser[J]. Infrared and Laser Engineering, 2014, 43(1): 103-107(in Chinese).
    [21] 林平. 用于ICF研究的激光脉冲整形驱动的智能控制研究[D]. 北京: 中国科学院大学, 2013: 1-73.

    LIN P. Research on intelligent control used in laser pulse shaping[D]. Beijing: University of Chinese Academy of Sciences, 2013: 1-73 (in Chinese).
    [22] 宗兆玉, 许党朋, 田小程, 等. 高精度整形激光脉冲产生技术研究[J]. 中国激光, 2017, 44(1): 0105001.

    ZONG Zh Y, XU D P, TIAN X Ch, et al. Laser pulse generation technology with high adjustment precision[J]. Chinese Journal of Lasers, 2017, 44(1): 0105001(in Chinese).
    [23] 远航. 百焦耳固体激光器时间波形主动整形技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 1-63.

    YUAN H. Research of initiactive waveform shaping technology on the hundred-joule solid laser system[D]. Harbin: Harbin Institute of Technology, 2014: 1-63(in Chinese).
    [24] 张聪聪, 刘洋, 谢戈辉, 等. 时域波形可编程的飞秒脉冲串掺镱光纤放大[J]. 激光与光电子学进展, 2021, 58(23): 2314001.

    ZHANG C C, LIU Y, XIE G H, et al. Time-domain waveform programmable femtosecond burst-mode ytterbium-doped fiber amplification[J]. Laser & Optoelectronics Progress, 2021, 58(23): 2314001(in Chinese).
    [25] 柳强, 聂明明, 江业文. 时域波形可控的激光波形产生系统及办法: 201810714994.1[P]. 2018-11-20.

    LIU Q, NIE M M, JIANG Y W. Laser waveform generation system and method with controllable time-domain waveform: 201810714994.1[P]. 2018-11-20(in Chinese).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Article views(711) PDF downloads(16) Cited by()

Proportional views

Programmable multi-pulse green laser

    Corresponding author: WU Lixia, wulixia@fjirsm.ac.cn
  • Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, China

Abstract: Programmable multi-pulse green laser was developed to satisfy the application requirements of a planer laser induced fluorescence and velocity interferometer system for any reflector. In the process of amplification, because the front edge gain of the laser pulse was fast and the back edge gain was slow, the laser pulse waveform was distorted. Adopting light intensity programmable technology, input the long pulse voltage waveform into an arbitrary waveform generator and load it onto the electro-optic modulator. In order to control the output light intensity in the time domain and output multiple pulses at the same time, the software was used to edit the long pulse voltage waveform according to the feedback of the output laser waveform. The results indicate that the waveform distortion during the amplification process is corrected. The following green laser square wave pulses are obtained: Single pulse with 110 ns pulse width; double pulses with 5 μs pulse interval and 50 ns pulse width; three pulses with pulse widths of 40 ns, 50 ns and 60 ns and pulse interval of 2 μs and 1 μs respectively. Of course, if necessary, by editing the long pulse voltage waveform, we can also get pulses of other parameters so as to obtain a laser with adjustable pulse number, waveform, pulse width, and pulse interval. This study provides a reference for planar laser-induced fluorescence technology and reflector velocity interferometer system.

0.   引言
  • 随着激光技术的发展,激光器在材料、军事等方面有着重大的应用[1-2]。在平面激光诱导荧光技术[3-4]中,要以一定时间间隔,两次甚至多次拍摄流场荧光图像;在反射物速度干涉仪系统[5-6]中,要求一发激光能够覆盖整个物理过程,并且脉冲为方波。在激光放大的过程中,会由于增益饱和的作用,方波脉冲前沿增益较大导致脉冲变陡;脉冲后沿增益较小趋于平缓,出现波形畸变。所以,研制出多脉冲且脉冲间隔、脉冲宽度及脉冲波形均可调的激光器显得尤为重要。

    目前产生多脉冲的方法主要有:被动锁模法[7-9]、分光延时法[10]、再生放大法[11]、双腔法[12]、控制抽运源法[13]、声光调制器法[14-15]等。中国空间技术研究院DUAN等人利用声光调制器选出100 kHz的脉冲串,能量为220 mJ[14]。长春大学LI等人在一个抽运周期内开启声光调制器两次,得到10 kHz间隔为20 μs的双脉冲,其波长为639 nm, 能量为7.1 μJ[15]

    目前对光脉冲进行整形的方法主要有:脉冲堆集法[16]、非线性效应法[17-18]、多光子吸收法[19]以及时域调制法[20-24]。时域调制法目前主要有两种:一种是通过任意波形电脉冲控制种子源的光脉冲,达到脉冲整形的目的[20-21];另一种是对LiNbO3强度调制器的电压进行编辑,实现脉冲整形[22-24]。中国工程物理研究院ZONG等人[22]、哈尔滨工业大学YUAN[23]利用任意波形发生器结合电光调制器得到指数波形、栅栏形等任意波形。华东师范大学精密光谱科学与技术国家重点实验室ZHANG等人[24]利用可编辑门阵列电路结合声光调制器得到频率1 MHz、能量20 μJ的脉冲串,脉冲串的轮廓可以整形为任意形状。

    迄今为止,利用这两种时域调制法实现脉冲整形的文献中均没有涉及多脉冲的产生。本文作者利用第2种时域调制法,对LiNbO3强度调制器的电压进行编辑,在任意波形发生器中输入一个长脉冲电压波形,通过对此电压波形的编辑,可以同时满足对激光脉冲波形的整形以及多脉冲的输出,且多脉冲的脉冲间隔、脉冲宽度及脉冲波形均任意可调。

1.   实验装置
  • 采用半导体/光纤/固体三模混合放大方案,实现弱光信号的高效放大,实验装置分为两部分:预放大器和主放大器。预放大部分采用清华大学的设备[25],该设备通过任意波形电脉冲控制种子源,而本文中是通过对LiNbO3强度调制器的电压进行编辑,在任意波形发生器中输入一个可编辑的长脉冲电压波形,同时实现脉冲波形的整形以及多脉冲的输出,且多脉冲的脉冲间隔、脉冲宽度及脉冲波形均任意可调。主放大器部分采用双灯90°环绕聚光腔,保证了抽运与增益分布的均匀性。

    图 1为预放大器光路图。图中,种子源为1064 nm连续窄线宽分布式反馈激光器,经过LiNbO3电光调制器(electro-optic modulator,EOM)、声光调制器(acoustic-optic modulator,AOM)后,被调制成一定频率的脉冲光进行放大。

    Figure 1.  Light path of preamplifier

    本文作者在任意波形发生器中输入长脉冲射频电压信号,并且将此电压脉冲波形加载到EOM、AOM上。再通过任意信号发生器软件对射频电压脉冲波形进行编辑,达到多脉冲波形整形的目的。

    预放大器输出1064 nm激光经过整形器进入主放大器,图 2中主放大器采用3级灯抽运模块对预放大激光进行放大后倍频。其中,激光棒为Nd ∶YAG,掺Nd原子数分数为1%,尺寸为∅8 mm×140 mm。全反镜(high reflection,HR)是平平镜。由于预放大输出激光脉冲能量为纳焦量级,考虑到微弱脉冲放大时很容易达到增益饱和,并且当抽运功率过高时,会因为反转粒子数不能全部被提取而产生自发辐射放大,主放大器采取以下3种措施来削弱自发辐射放大:在激光棒的双端面切3°角,避免平面激光棒之间生成子腔,产生寄生振荡;在前两级灯抽运模块放大光路中加入Cr ∶YAG,将弱光吸收避免其经过多次振荡消耗反转粒子数;在腔内加入光隔离器,以避免自发辐射放大打坏光学元器件。透镜1是凹透镜,其焦距为600 mm,透镜2是凸透镜,其焦距为500 mm,磷酸钛氧钾(KTiOPO4, KTP)的尺寸为9 mm×9 mm×15 mm。

    Figure 2.  Light path of main amplifier

2.   实验结果及讨论
  • 在任意波形发生器上输入EOM和AOM的射频电压波形,其中,通道1输出的射频电压波形给EOM,通道2输出的射频电压波形给AOM。通道1:脉冲为方波,频率10 kHz,脉宽110 ns;通道2:脉冲为方波,频率100 Hz,脉宽150 ns。110 ns单脉冲1064 nm激光经过3级灯抽运放大后能量为121 mJ,倍频后得到84 mJ绿光,其波形图见图 3。在脉冲放大的过程中,会由于增益饱和的作用,方波脉冲前沿增益较大导致脉冲变陡;脉冲后沿增益较小趋于平缓,出现波形畸变。

    Figure 3.  Waveform of green laser with 110 ns pulse width before shaping

    在反射物速度干涉仪系统中,需要波形相对平顶的绿光脉冲方波,为满足此技术要求,根据激光输出波形的反馈,通过任意信号发生器软件对加载在EOM上的射频电压脉冲波形进行局部编辑,见图 4。波形全长105个点,1个点代表 1 ns。根据图 3的反馈,将电压脉冲波形前沿的幅值相对于后沿降低,从而对输出激光波形进行预补偿。由于对电压脉冲波形进行了削波,经过3级灯抽运放大后能量降为98 mJ,倍频后得到68 mJ绿光,见图 5,波形近似方波。平顶度(peak-to-average,PTA)为1.06,其数值等于激光脉冲波形幅值的峰值与平均值的比值,代表的意义是方波的平顶度。脉冲整形后,脉冲能量的不稳定性(均方根)为1.416@1064 nm,1.475@532 nm。图 6为110 ns绿光脉冲的光斑。

    Figure 4.  Voltage waveform with 110 ns pulse width after editing

    Figure 5.  Waveform of green laser with 110 ns pulse width after shaping

    Figure 6.  The spot of green laser with pulse width 110 ns

  • 在任意波形发生器上输入加载于EOM和AOM的射频电压波形。通道1:脉冲为方波,频率10 kHz,脉宽6 μs;通道2:脉冲为方波,频率1 kHz,脉宽14 μs。6 μs单脉冲1064 nm激光经过3级灯抽运放大后能量为350 mJ,倍频后得到125 mJ绿光。

    为了输出双脉冲,通过任意信号发生器软件对6 μs长脉冲电压波形进行编辑,将其分为两个脉宽为50 ns的短脉冲电压波形,两者之间的时间间隔为5 μs。此双脉冲经过3级灯抽运放大后能量为111 mJ,倍频后得到78 mJ绿光,其波形图见图 7。双脉冲之间的时间间隔为5 μs,波形前沿变陡,后沿变缓,且第1个脉冲幅度高于第2个脉冲。在平面激光诱导荧光系统中,需要两个幅值相近且相对平顶的绿光脉冲方波,为满足此技术要求,根据激光输出波形的反馈,对脉宽为50 ns的双脉冲电压波形进行编辑,见图 8。由于对电压脉冲波形进行了削波,经过3级灯抽运放大后能量为89 mJ,倍频后得到63 mJ绿光。最终得到幅值相近、脉宽相同、波形近似方波的绿光双脉冲,PTA约为1.07,见图 9。由于两个脉冲的面积基本相同,所以两个绿光脉冲的能量也相当,大约为34 mJ。脉冲整形后,脉冲能量的不稳定性(均方根)为1.391@1064 nm,1.437@532 nm。图 10为绿光双脉冲光斑图。

    Figure 7.  a—double pulses of green laser before shaping b—waveform of the first green laser pulse c—waveform of the second green laser pulse

    Figure 8.  a—double pulses of voltage after editing b—waveform of the first voltage pulse c—waveform of the second voltage pulse

    Figure 9.  a—double pulses of green laser after shaping b—waveform of the first green laser pulse c—waveform of the second green laser pulse

    Figure 10.  The spot of green laser with double pulses

  • 在以上基础上,为了得到三脉冲,通过任意信号发生器软件对6 μs长脉冲电压波形进行编辑,将其分为脉宽为40 ns、50 ns、60 ns的三脉冲,时间间隔分别为2 μs、1 μs。此三脉冲1064 nm激光经过3级灯抽运放大后能量为146 mJ,倍频后得到103 mJ绿光,其波形图见图 11。3个绿光脉冲之间的时间间隔分别为2 μs、1 μs,波形前沿变陡,后沿变缓,且3个脉冲的幅度值依次降低。为了得到3个幅值相近且相对平顶的绿光脉冲方波,根据激光输出波形的反馈对三脉冲电压波形进行编辑,见图 12。由于对电压脉冲波形进行了削波,经过3级灯抽运放大后能量为122 mJ,倍频后得到84 mJ绿光,最终得到幅值相近,波形近似方波的3个绿光脉冲,PTA约为1.08,见图 13。3个绿光脉冲的能量比等于其面积比,即脉宽比,大约分别为23 mJ、29 mJ和35 mJ。脉冲整形后,脉冲能量的不稳定性(均方根)为1.441@1064 nm,1.475@532 nm。图 14为绿光三脉冲光斑图。

    Figure 11.  a—three pulses of green laser before shaping b—waveform of the first green laser pulse c—waveform of the second green laser pulse d—waveform of the third green laser pulse

    Figure 12.  a—three pulses of voltage after editing b—waveform of the first voltage pulse c—waveform of the second voltage pulse d—waveform of the third voltage pulse

    Figure 13.  a—three pulses of green laser after shaping b—waveform of the first green laser pulse c—waveform of the second green laser pulse d—waveform of the third green laser pulse

    Figure 14.  The spot of green laser with three pulses

3.   结论
  • 在任意波形发生器中输入一个长脉冲电压波形,并将此电压脉冲波形加载在LiNbO3电光调制器上。根据输出激光波形的反馈,利用任意信号发生器软件对长脉冲电压波形进行编辑,在实现时域上控制激光输出光强的同时输出多脉冲。结合实验编辑了3种电压脉冲波形,得到以下绿光脉冲波形: 单脉冲方波,脉宽为110 ns;时间间隔为5 μs的双脉冲方波,脉宽均为50 ns;时间间隔分别为2 μs和1 μs的三脉冲方波,脉宽分别为40 ns、50 ns、60 ns。当然,根据需要,通过编辑长脉冲电压波形,还能得到其它参数的脉冲,从而获得脉冲数、波形、脉宽以及脉冲间隔均可调的激光器。

Reference (25)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return