高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LD端面抽运Z型腔的Nd∶GdVO4激光器稳定性研究

李奇楠 李栋燕 于海平 罗小洁 丁状 向万贵

引用本文:
Citation:

LD端面抽运Z型腔的Nd∶GdVO4激光器稳定性研究

    通讯作者: 李奇楠, liqinan@l63.com
  • 基金项目:

    黑龙江省农业多维传感器信息感知工程技术研究中心开放课题 DWCGQKF202104

  • 中图分类号: TN248.4

Stability of LD end-pumped Z-cavity Nd∶GdVO4 laser

    Corresponding author: LI Qi'nan, liqinan@l63.com ;
  • CLC number: TN248.4

  • 摘要: 为了提升半导体激光二极管端面抽运Z型腔固体激光器的稳定性,以Nd∶GdVO4固体激光器为例,采用数值模拟的方法,在考虑晶体热透镜效应的情况下,研究了Z型谐振腔的臂长、镜片曲率半径等参数对高斯光束的影响,得到了晶体热透镜焦距随抽运光功率变化的关系曲线、谐振腔稳定性随热透镜焦距变化的关系曲线、以及高斯光束束腰半径随谐振腔分臂长和镜片曲率半径变化的关系曲线,并绘制了高斯光束的轮廓曲线。结果表明,适当选取Z型腔的分臂参数可在晶体主平面和后端镜处获得较小的束腰尺寸。本研究结果可对Z型固体激光器谐振腔的搭建提供理论参考及依据。
  • 图 1  Z型折叠腔

    Figure 1.  Z-type folding cavity

    图 2  折叠腔等效图

    Figure 2.  Equivalent diagram of folding cavity

    图 3  热透镜焦距与抽运光功率关系

    Figure 3.  Relationship between thermal lens focal length and pump power

    图 4  谐振腔稳定性参量随热透镜焦距的变化趋势

    Figure 4.  Stability parameter of the resonator changes with the focal length of the thermal lens

    图 5  腔内光束尺寸分布

    Figure 5.  Size distribution of the beam in the cavity

    图 6  臂长变化对谐振腔模半径的影响

    Figure 6.  Effect of the variation of the arm length on the cavity mode radius

    图 7  曲率半径R2变化对谐振腔模半径的影响

    Figure 7.  Effect of radius of curvature R2 on resonant cavity mode radius

    图 8  臂长L3变化对M1和M4处的光斑半径的影响

    Figure 8.  Effect of the variation of the arm length L3 on the beam radius at the M1 and M4

    表 1  Nd∶GdVO4晶体特性参数

    Table 1.  Nd∶GdVO4 crystal characteristic parameters

    absorption coefficient 7.4 mm
    thermal conductivity 11.7 W/(m·K)
    thermal-optical coefficient 4.7×10-6 K
    doping concentration 0.5%
    size of crystal 5 mm×5 mm×10 mm
    下载: 导出CSV
  • [1] 浦双双, 任广胜, 吕冬, 等. 浅谈全固态激光器的研发与应用概况[J]. 数码世界, 2019, 170(12): 287.

    PU Sh Sh, REN G Sh, LÜ D, et al. An overview of the development and application of all-solid-state lasers[J]. Digital World, 2019, 170(12): 287. 
    [2] 方泽鹏. 高功率LD侧面泵浦全固态激光器研究[D]. 重庆: 重庆邮电大学, 2022: 5-12.

    FANG Z P. Research on high power LD side-pumped all-solid-state lasers[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2022: 5-12(in Chinese).
    [3] 李溶涛, 孟俊清, 陈晓, 等. VCSEL端面泵浦的全固体激光器[J]. 中国激光, 2022, 49(18): 1801002.

    LI R T, MENG J Q, CHEN X, et al. VCSEL end-pumped all-solid-state laser[J]. Chinese Journal of Lasers, 2022, 49(18): 1801002(in Chinese). 
    [4] 钟凯, 张献中, 徐德刚, 等. 全固态双波长激光器研究进展(特邀)[J]. 光电技术应用, 2022, 37(4): 13-26.

    ZHONG K, ZHANG X Zh, XU D G, et al. Advances in all-solid-state dual-wavelength laser research (Invited)[J]. Photonics Applications, 2022, 37(4): 13-26(in Chinese). 
    [5]

    HAN Zh Y, SUN D L, ZHANG H L, et al. 962 nm LD end-pumped Er∶YSGG cascade pulsed lasers at room temperature[J]. Infrared Physics and Technology, 2022, 127(23): 35-40.
    [6] 陈星, 葛亚琼. Zr65Al7.5Ni10Cu17.5非晶合金激光熔凝的热效应模拟[J]. 激光技术, 2020, 44(2): 202-205.

    CHEN X, GE Y Q. Simulation of thermal effects of laser melting of Zr65Al7.5Ni10Cu17.5 amorphous alloy[J]. Laser Technology, 2020, 44(2): 202-205(in Chinese). 
    [7] 李隆, 田丰, 赵致民, 等. LD端面泵浦折叠腔Nd∶YVO4/LBO激光器[J]. 光子学报, 2004, 33(4): 396-399.

    LI L, TIAN F, ZHAO Zh M, et al. LD end-pumped folded-cavity Nd∶YVO4/LBO laser[J]. Acta Photonica Sinica, 2004, 33(4): 396-399(in Chinese). 
    [8] 秦琬, 杜晨林, 阮双琛, 等. 端面抽运四镜折叠腔Nd∶YVO4激光器的研究[J]. 光子学报, 2007, 36(5): 780-784.

    QIN W, DU Ch L, RUAN Sh Ch, et al. End-face pumping four-mi-rror folded-cavity Nd∶YVO4 laser[J]. Acta Photonica Sinica, 2007, 36(5): 780-784(in Chinese). 
    [9] 侯军燕, 汪岳峰. LD双端端面抽运Nd∶YVO4折叠腔主振荡器的稳定性研究[J]. 红外, 2009, 30(1): 36-40.

    HOU J Y, WANG Y F. Stability study of LD double-ended end-surface pumped Nd∶YVO4 folded-cavity master oscillator[J]. Infrared, 2009, 30(1): 36-40(in Chinese). 
    [10] 张强, 汪岳峰, 竹孝鹏, 等. LD双端泵浦U型腔Nd∶YVO4激光器稳定性研究[J]. 应用光学, 2010, 31(6): 1027-1031.

    ZHANG Q, WANG Y F, ZHU X P, et al. Stability study of LD double-end pumped U-cavity Nd∶YVO4 laser[J]. Journal of A-pplied Optics, 2010, 31(6): 1027-1031(in Chinese). 
    [11] 王天明, 李斌成, 赵斌兴, 等. 高功率激光作用下光学元件非线性热效应研究[J]. 激光技术, 2022, 46(6): 729-735.

    WANG T M, LI B Ch, ZHAO B X, et al. Study of nonlinear thermal effects of optical elements under high power laser action[J]. Laser Technology, 2022, 46(6): 729-735(in Chinese). 
    [12] 杨子鑫. 蓝光LD直接泵浦激光增益介质可见激光特性研究[D]. 济南: 齐鲁工业大学, 2022: 7-20.

    YANG Z X. Thermal stability analysis based on V-shaped resonant cavity[D]. Ji'nan: Qilu University of Technology, 2022: 7-20(in Chinese).
    [13] 李萌萌, 杨飞, 赵上龙, 等. 复合Nd∶YAG晶体固体激光器热效应研究[J]. 激光与红外, 2020, 50(1): 42-48.

    LI M M, YANG F, ZHAO Sh L, et al. Thermal effect study of composite Nd∶YAG crystal solid-state lasers[J]. Laser & Infrared, 2020, 50(1): 42-48(in Chinese). 
    [14] 金凤文. 100 kHz声光调Q Nd∶GdVO4激光器的研究[D]. 哈尔滨: 哈尔滨工业大学, 2007: 30-57.

    JIN F W. Study of 100 kHz acousto-optic modulated Q Nd∶GdVO4 laser[D]. Harbin: Harbin Institute of Technology, 2007: 30-57(in Chinese).
    [15]

    INNOCENZI M E, YURA H T, FINCHER C L, et al. Thermal mo-deling of continuous-wave end-pump solid-state laser[J]. Applied Physics Letters, 1990, 56(19): 1831-1833.
    [16] 秦琬, 杜晨林, 阮双琛, 等. 四镜折叠腔激光器腔内倍频束腰研究[J]. 深圳大学学报(理工版), 2007, 90(2): 154-158.

    QIN W, DU Ch L, RUAN Ch Sh, et al. Intracavity frequency doubling beam waist study of a four-mirror folding cavity laser[J]. Journal of Shenzhen University (Science and Technology Edition), 2007, 90(2): 154-158(in Chinese). 
    [17] 吕百达. 激光光学[M]. 第3版. 北京. 高等教育出版社, 2003: 268-273.

    LÜ B D. Laser optics[M]. 3th ed. Beijing: Higher Education Press, 2003: 268-273(in Chinese).
    [18] 朱思祁, 付乔克, 李安明, 等. LD泵浦Nd∶GdVO4蓝光激光器动态热稳定腔设计[J]. 光电工程, 2010, 37(11): 43-47.

    ZHU S Q, FU Q K, LI A M, et al. Dynamic thermal stabilization cavity design for LD-pumped Nd∶GdVO4 blue laser[J]. Photovoltaic Engineering, 2010, 37(11): 43-47(in Chinese). 
    [19] 王瑞, 李港, 陈檬. 具有热透镜效应的LD端泵Z型腔的理论研究[J]. 激光与红外, 2001, 31(5): 306-308.

    WANG R, LI G, CHEN M. Theoretical study of Z-cavity of LD end pump with thermal lensing effect[J]. Laser and Infrared, 2001, 31(5): 306-308(in Chinese). 
  • [1] 郭嘉伟李彤牛瑞华薛亮平李燕凌王宏元 . Cr,Tm,Ho:YAG激光器温度特性的数值分析. 激光技术, 2011, 35(6): 761-764. doi: 10.3969/j.issn.1001-3806.2011.06.010
    [2] 王灿召李丽尚卫东孙建国郭占斌李忠华 . 正分支共焦非稳腔的脉冲固体激光器研究. 激光技术, 2013, 37(4): 441-444. doi: 10.7510/jgjs.issn.1001-3806.2013.04.006
    [3] 李发丹尚卫东孙建国郭占斌冯光周晓军秦祖军 . 6阶掺锗级联喇曼光纤激光器的数值模拟及分析. 激光技术, 2009, 33(4): 413-415,418. doi: 10.3969/j.issn.1001-3806.2009.04.023
    [4] 代保江陈烽张东石杜广庆孟祥卫 . 飞秒激光制备波导型光合波器的数值模拟. 激光技术, 2012, 36(2): 251-254,264. doi: 10.3969/j.issn.1001-3806.2012.02.029
    [5] 熊吉川兰戈万勇 . Cr4+:YAG被动调Q激光器脉冲波形数值模拟及优化. 激光技术, 2008, 32(4): 430-433.
    [6] 靳冬欢刘文广陆启生 . 3股互击式喷注器混合特性的数值模拟. 激光技术, 2011, 35(2): 230-233,263. doi: 10.3969/j.issn.1001-3806.2011.02.024
    [7] 李明海柳爱国宋耀祖 . 激光放大介质温度场和热应力场的数值模拟. 激光技术, 2002, 26(2): 86-89.
    [8] 夏晶蒋国保赵楚军 . 高吸收调制下掺铥锁模光纤激光器的数值研究. 激光技术, 2016, 40(4): 571-575. doi: 10.7510/jgjs.issn.1001-3806.2016.04.024
    [9] 杨秋平叶兵 . 用双平凸薄透镜组聚焦高斯激光束. 激光技术, 2010, 34(4): 520-524. doi: 10.3969/j.issn.1001-3806.2010.04.024
    [10] 刘顺洪吉巧杰扬晶 . 钢管激光弯曲成形的数值模拟. 激光技术, 2006, 30(4): 355-359.
    [11] 刘顺洪万鹏腾杨晶 . 激光弯曲成形数值模拟的研究进展. 激光技术, 2002, 26(3): 161-164.
    [12] 刘子昂石伟汪诚 . 激光冲击强化残余应力的数值模拟研究. 激光技术, 2017, 41(1): 1-5. doi: 10.7510/jgjs.issn.1001-3806.2017.01.001
    [13] 王明宇周跃进郭冲 . 激光超声检测表面裂纹深度的数值模拟. 激光技术, 2017, 41(2): 178-181. doi: 10.7510/jgjs.issn.1001-3806.2017.02.006
    [14] 杨洪亮金湘中修腾飞费鑫江叶颖 . 钢/铝异种金属光纤激光焊接数值模拟. 激光技术, 2016, 40(4): 606-609. doi: 10.7510/jgjs.issn.1001-3806.2016.04.031
    [15] 杨海林牛燕雄沈学举武东生张鹏姜楠 . 烟幕对激光干扰效果的数值模拟研究. 激光技术, 2008, 32(5): 513-516.
    [16] 李晓锋周昕卢熙伍波杨泽后陈涌周鼎富侯天晋 . 激光在烟雾中传输特性的数值模拟分析. 激光技术, 2010, 34(3): 381-384. doi: 10.3969/j.issn.1001-3806.2010.03.027
    [17] 禹烨牛燕雄王秀生刘杰姜楠 . 强激光稳态热晕效应的数值模拟研究. 激光技术, 2007, 31(2): 182-184.
    [18] 汪建敏周群立姜银方张梦蕾程科升万里赵龑 . 中空激光冲击金属板料变形的数值模拟. 激光技术, 2012, 36(6): 727-730. doi: 10.3969/j.issn.1001-3806.2012.06.004
    [19] 董淑福陈国夫赵尚弘郑光威李玉江 . 1180nm激光抽运Tm, Ho石英光纤激光器理论研究. 激光技术, 2006, 30(2): 138-141.
    [20] 董淑福陈国夫赵尚弘沈华王屹山 . 高功率多模铒镱共掺双包层光纤激光器的研究. 激光技术, 2006, 30(4): 366-369.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  83
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-18
  • 录用日期:  2023-06-15
  • 刊出日期:  2024-05-25

LD端面抽运Z型腔的Nd∶GdVO4激光器稳定性研究

    通讯作者: 李奇楠, liqinan@l63.com
  • 齐齐哈尔大学 理学院,齐齐哈尔 161006,中国
基金项目:  黑龙江省农业多维传感器信息感知工程技术研究中心开放课题 DWCGQKF202104

摘要: 为了提升半导体激光二极管端面抽运Z型腔固体激光器的稳定性,以Nd∶GdVO4固体激光器为例,采用数值模拟的方法,在考虑晶体热透镜效应的情况下,研究了Z型谐振腔的臂长、镜片曲率半径等参数对高斯光束的影响,得到了晶体热透镜焦距随抽运光功率变化的关系曲线、谐振腔稳定性随热透镜焦距变化的关系曲线、以及高斯光束束腰半径随谐振腔分臂长和镜片曲率半径变化的关系曲线,并绘制了高斯光束的轮廓曲线。结果表明,适当选取Z型腔的分臂参数可在晶体主平面和后端镜处获得较小的束腰尺寸。本研究结果可对Z型固体激光器谐振腔的搭建提供理论参考及依据。

English Abstract

    • 全固态激光器由于其高效性、光束输出稳定、光束质量高等优势,在医疗、安全检测、材料加工[1-2]、原子实验等领域得到广泛应用[3],并随着新型、功能优异的增益介质陆续被研发出来,全固态激光器得到更好的发展[4]。Z型腔的全固体激光器可以实现更长的光程、更小的体积和更高的储能效率,在波长调谐、模式选择以及实现锁模脉冲[5]等方面更具有优势,但是由于Z型谐振腔涉及到的腔参数较多(分臂长度及镜面曲率半径等),且随着抽运功率的增加,激光晶体的热透镜效应逐步显著[5],对谐振腔的稳定性起到破坏作用,因此,Z型谐振腔的稳定性问题一直是影响激光器正常运转的重要因素。2004年, LI等人对由Nd∶YVO4(掺钕钒酸钇晶体)组成的端面抽运Z型折叠腔做了深入的理论分析,得到了在激光器正常工作条件下,激光晶体的热焦距及谐振腔臂长度的变化范围[7],而没有考虑高斯光束光斑的大小变化情况。QIN等人曾对端面抽运的Z型固态激光器腔体进行了仿真,并给出了其稳定性与高斯光束束腰半径和腔长之间的联系[8],但未考虑腔镜曲率半径对高斯光束半径的影响。HOU等人对双端抽运的折叠腔进行了仿真,并据此得出结论:调整谐振腔的臂长,可以改变共振腔的稳定区域; 还利用相同的光学器件,分别设计了长、短腔体,并做了比较[9],但只考虑了热透镜焦距对谐振腔的稳定性参量和光斑半径的影响。ZHANG等人在对谐振腔稳定性进行研究时,探究了谐振腔不同臂长时,激光晶体中心处的光斑大小以及谐振腔的稳定区域[10],并未考虑镜面曲率半径对高斯光束光斑大小的影响。

      本文中综合考虑Z型折叠腔的臂长、镜面曲率半径、晶体热透镜效应等各种因素对高斯光束的影响,针对半导体激光二极管(laser diode, LD)端面抽运折叠腔的Nd∶GdVO4(掺钕钒酸钆晶体)激光器,应用ABCD传输矩阵理论,通过编程模拟,对谐振腔的稳定进行了全面的计算和分析,为Z型折叠腔激光器的优化提供了可靠的依据。

    • Z型折叠腔的结构如图 1所示。图中, LD为二极管抽运激光器,抽运光经光纤和耦合透镜后注入谐振腔,M1为抽运端镜,曲率半径为R1;激光晶体以Nd∶GdVO4为例;M2为第一反射镜,曲率半径为R2;M3为第二反射镜,曲率半径为R3;M4为输出镜,曲率半径为R4; M1到晶体、晶体到M2、M2到M3、M3到M4的距离分别为L1L2L3L4; θ为折叠镜M3处的折叠半角。

      图  1  Z型折叠腔

      Figure 1.  Z-type folding cavity

      在LD单端抽运激光器中,抽运过程中晶体会产生热效应[11],进而引起介质折射率、热膨胀系数、热导率等物理量的变化,从而影响激光在介质中传播的方式和性能[12-13]。产生的热效应中最主要的是热透镜效应,其它的则要弱得多,可以忽略不计[14]

      当激光晶体采用端面抽运时,可以将其近似视为一个焦距是f的热透镜,热透镜与抽运功率之间的关系为[15]

      $ f=\frac{\pi K_{\mathrm{c}} w_{\mathrm{P}}{ }^2}{P_{\mathrm{th}}\left(\frac{\mathrm{d} n}{\mathrm{~d} t}\right)\left[\frac{1}{1-\exp (-\alpha l)}\right]} $

      (1)

      式中: $w_{\mathrm{p}}$表示抽运光斑半径; $K_{\mathrm{c}}$是热传导系数; $\mathrm{d} n / \mathrm{d} t$是晶体的光热系数; $\alpha$是晶体的吸收系数; $l$表示晶体长度$; P_{\mathrm{th}}=\left(1-\lambda_{\mathrm{p}} / \lambda\right) P_{\mathrm{p}}$, 是热载荷功率$; P_{\mathrm{p}}$是抽运光功率; λp为抽运波长; λ为激光波长。

      用F表示Nd∶GdVO4晶体,图 1可等效为图 2

      图  2  折叠腔等效图

      Figure 2.  Equivalent diagram of folding cavity

      不引入像散对光束的影响[16],以M1为参考面,则腔内的往返矩阵为:

      $ \begin{array}{c} {\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]=\left[\begin{array}{cc} 1 & L_1 \\ 0 & 1 \end{array}\right]\left[\begin{array}{cc} 1 & 0 \\ -\frac{1}{f} & 1 \end{array}\right]\left[\begin{array}{cc} 1 & L_2 \\ 0 & 1 \end{array}\right]\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] .} \\ {\left[\begin{array}{cc} 1 & L_3 \\ 0 & 1 \end{array}\right]\left[\begin{array}{cc} 1 & 0 \\ -\frac{2}{R_3} & 1 \end{array}\right]\left[\begin{array}{cc} 1 & L_4 \\ 0 & 1 \end{array}\right]\left[\begin{array}{cc} 1 & 0 \\ -\frac{2}{R_4} & 1 \end{array}\right] .} \\ {\left[\begin{array}{cc} 1 & L_4 \\ 0 & 1 \end{array}\right]\left[\begin{array}{cc} 1 & 0 \\ -\frac{2}{R_3} & 1 \end{array}\right]\left[\begin{array}{cc} 1 & L_3 \\ 0 & 1 \end{array}\right]\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]\left[\begin{array}{cc} 1 & L_2 \\ 0 & 1 \end{array}\right] .} \\ {\left[\begin{array}{cc} 1 & 0 \\ -\frac{1}{f} & 1 \end{array}\right]\left[\begin{array}{cc} 1 & L_1 \\ 0 & 1 \end{array}\right]\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]} \end{array} $

      (2)

      式中: a, b, c, d分别表示高斯光束往返矩阵对应的4个元素。

      谐振腔的稳定性参量g1g2为:

      $ g_1=a-\frac{b}{R_1} $

      (3)

      $ g_2=d-\frac{b}{R_2} $

      (4)

      谐振腔的稳定性条件为:

      $ 0<g_1 g_2<1 $

      (5)

      激光晶体处的光斑半径为[17]

      $ w^2=\frac{\lambda|b|}{\pi \sqrt{1-(a+d)^2 / 4}} $

      (6)

      抽运端镜M1处的光斑半径为[8]:

      $ w_1{ }^2=\frac{\lambda}{\pi} \frac{\left|2 b g_2\right|}{\sqrt{1-\left(2 g_1 g_2-1\right)^2}} $

      (7)

      后端镜M4处的光斑半径为:

      $ w_4{ }^2=\frac{\lambda}{\pi} \frac{\left|2 b g_1\right|}{\sqrt{1-\left(2 g_1 g_2-1\right)^2}} $

      (8)
    • 所选激光晶体Nd∶GdVO4各项特性参数[18]表 1所示。

      表 1  Nd∶GdVO4晶体特性参数

      Table 1.  Nd∶GdVO4 crystal characteristic parameters

      absorption coefficient 7.4 mm
      thermal conductivity 11.7 W/(m·K)
      thermal-optical coefficient 4.7×10-6 K
      doping concentration 0.5%
      size of crystal 5 mm×5 mm×10 mm

      结合表 1和式(1),抽运光束在晶体上的半径wp=0.25 mm,对其进行数值仿真,得出了热透镜的焦距和抽运光功率之间的曲线。

      热透镜的焦距与抽运光功率呈反比例关系,随着抽运光功率的增加,f会逐步降低,热透镜效应愈加显著[19]。从图 3可知, 所设计的折叠腔允许激光晶体的热透镜焦距变化范围为25 mm~250 mm。

      图  3  热透镜焦距与抽运光功率关系

      Figure 3.  Relationship between thermal lens focal length and pump power

      折叠腔的各个参量为:L1=15 mm,L2=15 mm,L3=250 mm,L4=115 mm,R2R1=+∞ mm,R3=100 mm,R4=50 mm。

      图 4表示f在(0 mm,250 mm)时,谐振腔稳定性参量g1g2的变化。随着f取值的增大,稳定性参数g1g2先减小到0又增大。从图 4可知,所设计的折叠腔允许激光晶体的热透镜焦距变化范围有两个: (25 mm,81 mm)和(81 mm,250mm)。

      图  4  谐振腔稳定性参量随热透镜焦距的变化趋势

      Figure 4.  Stability parameter of the resonator changes with the focal length of the thermal lens

      折叠腔参量与图 4描述的腔参量保持一致,设激光晶体热透镜焦距f分别为100 mm和150 mm。从图 5可以看出Z型腔整个腔内的光束大小分布情况。图中, L表示谐振腔腔长,这个腔具有至少两个束腰位置。可在分臂较长的位置处插入Q开关或非线性光学晶体光学元件。由图 5可知,当f=100 mm时,与前面拟定的抽运光束大小接近,可以达到非常好的匹配。

      图  5  腔内光束尺寸分布

      Figure 5.  Size distribution of the beam in the cavity

      图 6a所示, 腔的各个参量为:L1L2=150 mm,R2R1=+∞ mm,R3=100 mm,R4=50 mm,L4分别取不同的值时,随着L3的增加,束腰半径的变化并不是单一的,在所取范围内出现2个尖峰,在激光输出稳定条件下,L4=115 mm时,L3的允许取值范围在; L4=130 mm时,L3的允许取值范围在;L4=160 mm时,L3的允许取值范围在。从图 6可知, 随着L4变小,光束的稳定区间在变大,束腰半径在变小,束腰位置向M3靠近。

      图  6  臂长变化对谐振腔模半径的影响

      Figure 6.  Effect of the variation of the arm length on the cavity mode radius

      图 6b所示,腔的各个参量为:R2R1=+∞ mm,R3=100 mm,R4=50 mm,L3=250 mm,L4=115 mm,L1分别取不同的值时,随着L2的增加,臂长L1越大, 束腰半径越小,且束腰位置远离输入端镜。

      图 7中折叠腔的其它参量为:R1=+∞ mm,R3=100 mm,R4=50 mm。在满足稳定条件的情况下,当L1L2=150 mm、L4 =115 mm时,改变R2的曲率半径和L3分臂光束,束腰半径大小随R2的变化情况,如图 7a所示。增大M2的曲率半径,光束的束腰半径减小且束腰位置向M3靠近。图 7b中,L3=250 mm,L4=115 mm,当L1=150 mm时,改变R2的曲率半径和L2分臂光束,同样随着R2增大,光束的束腰半径减小。

      图  7  曲率半径R2变化对谐振腔模半径的影响

      Figure 7.  Effect of radius of curvature R2 on resonant cavity mode radius

      折叠腔的各个参量为:L1L2=150 mm,R2R1=+∞ mm,R3=100 mm,R4=50 mm时,在激光器稳定运转的情况下,从图 8a可以看出,增大L3的臂长,抽运端镜M1处的光斑大小基本稳定,增大臂长L4,臂长L3的稳定区域变小,M1镜处的光斑半径变大;从图 8b可知,增大L3的臂长,后端镜M4处的光斑逐渐变小,增大臂长L4,臂长L3的稳定区域变小,M4镜处的光斑半径变小。

      图  8  臂长L3变化对M1和M4处的光斑半径的影响

      Figure 8.  Effect of the variation of the arm length L3 on the beam radius at the M1 and M4

    • 分析了Nd∶GdVO4晶体的热透镜效应,以传输矩阵为基础,数值模拟了在稳定条件下,通过改变Z型腔的腔体参量对激光器稳定性的影响。

      (a) 在L1L2不变的条件下,随着L4变小,光束的稳定区间变大,束腰半径变小,束腰位置向M3靠近。

      (b) 在L3L4不变的条件下,适当增大L1的臂长,可获得更小的束腰。

      (c) 其它腔参量不变,改变L3的分臂长度, 增大R2,光束的束腰半径减小且束腰位置向M3靠近;改变L2的分臂长度, 增大R2,光束的束腰半径减小且束腰位置向M2靠近。

      (d) 在稳定条件下,增大L3的臂长,抽运端镜处的光斑半径基本稳定,后端镜处的光斑大小逐渐变小。

参考文献 (19)

目录

    /

    返回文章
    返回