高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InGaAs纳米线雪崩焦平面探测器发展研究

张伟 徐强 谢修敏 邓杰 覃文治 胡卫英 陈剑 宋海智

引用本文:
Citation:

InGaAs纳米线雪崩焦平面探测器发展研究

    作者简介: 张伟(1983-),男,博士研究生,现主要从光电功能材料与器件的研究.
    通讯作者: 宋海智, hzsong1296@163.com
  • 基金项目:

    国家重点研发计划资助项目 2017YFB0405302

    四川省科技计划资助项目 2018TZDZX0001

  • 中图分类号: O475

Progress of InGaAs nanowire avalanche focal plane detectors

    Corresponding author: SONG Haizhi, hzsong1296@163.com
  • CLC number: O475

  • 摘要: 基于InGaAs纳米线的光电探测器,由于其优异的性能而受到广泛的关注和研究。综述了InGaAs纳米线光电探测器的探测机理、材料结构、器件性能和当前的研究现状。讨论了InGaAs纳米线雪崩焦平面探测器结构设计、纳米线材料精密生长、纳米线材料的界面与缺陷控制、纳米线雪崩焦平面器件制备工艺等关键技术。对发展高光子探测效率、低噪声、高增益InGaAs纳米线雪崩焦平面探测器的前景进行了展望。
  • 图 1  InxGa1-xAs 77K下带隙随In的质量分数变化示意图[1]

    图 2  InGaAs纳米线雪崩焦平面的结构图[2]

    图 3  InGaAs纳米线每层生长后在扫描电子显微镜下的图片[2]

    图 4  a—InGaAs探测器的3维模型图  b—InGaAs探测器在扫描电子显微镜下的图片

  • [1]

    JUNG C S, KIM H S, JUNG G B, et al. Composition and phase tuned InGaAs alloy nanowires[J]. The Journal of Physical Chemistry, 2011, C115(16):7843-7850.
    [2]

    FARRELL A C, MENG X, REN D K, et al. InGaAs-GaAs nanowire avalanche photodiodes toward single-photon detection in free-running mode[J]. Nano Letters, 2019, 19(1):582-590. doi: 10.1021/acs.nanolett.8b04643
    [3]

    TAN H. Synthesis and optoelectronic properties of InGaAs nanostructures[D]. Changsha: Hunan University, 2015: 25-26(in Chinese).
    [4]

    TOMIOKA K, YOSHIMURA M, FUKUI T. A Ⅲ-Ⅴ nanowire channel on silicon for high-performance vertical transistors[J]. Nature, 2012, 488(7410):189-192. doi: 10.1038/nature11293
    [5]

    XU Y H, SONG B, CHEN X F, et al. Application of micro near infrared spectrometer in measuring sugar content of apple[J].Laser Technology, 2019, 43(6):735-740(in Chinese).
    [6]

    ZHANG J L, XIN M, FAN L L, et al. Monitoring systems for skin flap transplantation based on near infrared spectroscopy[J]. Laser Technology, 2020, 44(1):91-95(in Chinese).
    [7]

    YANG T, HERTENBERGER S, MORKOTTER S, et al. Size, composition, and doping effects on In(Ga)As nanowire/Si tunnel diodes probed by conductive atomic force microscopy[J]. Applied Physics Letters, 2012, 101(9):233102.
    [8]

    ZHANG W F, ZHANG R L, ZHAO N Sh, et al. Development progress of InGaAs short-wave infrared plane arrays[J]. Infrared Technology, 2012, 34(6): 361-365(in Chinese).
    [9]

    PAN J X, YI Sh Zh, ZHOU H Y. InGaAs shortwave infrared detector[J]. Infrared and Laser Engineering, 2007, 36(s1):202-205(in Chinese).
    [10]

    YAZAWA M, KOGUCHI M, HIRUMA K. Heteroepitaxial ultrafine wire-like growth of InAs on GaAs substrates[J]. Applied Physics Letters, 1991, 58(10): 1080-1082. doi: 10.1063/1.104377
    [11]

    LOGEESWARAN V J, SARKAR A, ISLAM M S, et al. A 14-ps full width at half maximum high-speed photoconductor fabricated with intersecting InP nanowires on an amorphous surface[J]. Applied Physics, 2008, A91(1):1-5. doi: 10.1007/s00339-007-4394-x
    [12]

    SVENSSON J, ANTTU N, VAINORIUS N, et al. Diameter-depen-dent photocurrent in InAsSb nanowire infrared photodetectors[J]. Nano Letters, 2013, 13(4):1380-1385. doi: 10.1021/nl303751d
    [13]

    WALLENTIN J, ANTTU N, ASOLI D, et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit[J]. Science, 2013, 339(6123):1057-1060. doi: 10.1126/science.1230969
    [14]

    DAI X, ZHANG S, WANG Z L, et al. GaAs/AlGaAs nanowire photodetector[J]. Nano Letters, 2014, 14 (5):2688-2693. doi: 10.1021/nl5006004
    [15]

    LIU Z, LUO T, LIANG B, et al. High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared [J]. Nano Research, 2013, 6(11):775-783. doi: 10.1007/s12274-013-0356-0
    [16]

    REN P Y, HU W, ZHANG Q L, et al. Band-selective infrared photodetectors with complete-composition-range InAsxPl-x alloy nano-wires[J]. Advanced Materials, 2014, 26(44):7444-7449. doi: 10.1002/adma.201402945
    [17]

    FANG H H, HU W D, WANG P, et al. Visible light-assisted high-performance mid-infrared photodetectors based on single InAs nanowire[J]. Nano Letters, 2016, 16(10):6416-6424. doi: 10.1021/acs.nanolett.6b02860
    [18]

    TAN H, FAN C, MA L, et al. Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors[J]. Nano-Micro Letters, 2016, 8(1):29-35.
  • [1] 魏红振李家鎔 . 薄膜红外探测器的研究. 激光技术, 1999, 23(2): 122-125.
    [2] 杨淑连宿元斌何建廷魏芹芹盛翠霞申晋 . 位置敏感探测器测量准确度的研究. 激光技术, 2014, 38(6): 830-834. doi: 10.7510/jgjs.issn.1001-3806.2014.06.023
    [3] 谢修敏徐强陈剑周宏代千张伟胡卫英宋海智 . 锑化物Ⅱ类超晶格中远红外探测器的研究进展. 激光技术, 2020, 44(6): 688-694. doi: 10.7510/jgjs.issn.1001-3806.2020.06.007
    [4] 吴锋吴柏昆余文志钱银博何岩 . 基于33耦合器相位解调的光纤声音传感器设计. 激光技术, 2016, 40(1): 64-67. doi: 10.7510/jgjs.issn.1001-3806.2016.01.014
    [5] 江莺段峥张晓丽胡兴柳 . 一组波峰波谷实现光纤环镜传感器在线测量. 激光技术, 2020, 44(5): 587-591. doi: 10.7510/jgjs.issn.1001-3806.2020.05.010
    [6] 罗进江山熊岩 . 基于边缘滤波法的光纤光栅振动传感器解调技术. 激光技术, 2013, 37(4): 469-472. doi: 10.7510/jgjs.issn.1001-3806.2013.04.012
    [7] 刘兵陶炜柯尊贵冯力天袁菲李晓峰 . 相干激光雷达平衡式相干探测技术研究. 激光技术, 2015, 39(1): 46-49. doi: 10.7510/jgjs.issn.1001-3806.2015.01.009
    [8] 刘宏阳张燕革艾勇代永红陈晶 . 用于高速微弱光信号的平衡探测技术研究. 激光技术, 2015, 39(2): 182-184. doi: 10.7510/jgjs.issn.1001-3806.2015.02.007
    [9] 顾宏灿程玲黄俊斌唐波李日忠 . 光开关选通的光纤激光水听器时分复用阵列. 激光技术, 2016, 40(4): 536-540. doi: 10.7510/jgjs.issn.1001-3806.2016.04.017
    [10] 王晓蒙王会峰姚乃夫 . 基于粒子群算法的激光位移传感器参量优化. 激光技术, 2018, 42(2): 181-186. doi: 10.7510/jgjs.issn.1001-3806.2018.02.008
    [11] 陈大凤鲁平刘德明 . 基于保偏光子晶体光纤的高灵敏度曲率传感器. 激光技术, 2015, 39(4): 450-452. doi: 10.7510/jgjs.issn.1001-3806.2015.04.004
    [12] 徐康吕淑媛杨祎 . 光子晶体光纤CO2气体传感器的研究. 激光技术, 2017, 41(5): 693-696. doi: 10.7510/jgjs.issn.1001-3806.2017.05.015
    [13] 白刚菅傲群邹璐 . 基于共振光隧穿效应的加速度传感器. 激光技术, 2019, 43(1): 43-47. doi: 10.7510/jgjs.issn.1001-3806.2019.01.009
    [14] 任成张书练 . 布里渊散射分布式光纤传感器研究热点跟踪. 激光技术, 2009, 33(5): 473-477,481. doi: 10.3969/j.issn.1001-3806.2009.05.008
    [15] 王志国尹亮林承友宣佳彬叶青 . 双金属层表面等离子体共振传感器灵敏度优化. 激光技术, 2017, 41(3): 328-331. doi: 10.7510/jgjs.issn.1001-3806.2017.03.005
    [16] 任广江山闫奇众印新达熊岩 . 基于33耦合器Fox-Smith型光纤周界系统的定位技术. 激光技术, 2014, 38(4): 480-483. doi: 10.7510/jgjs.issn.1001-3806.2014.04.010
    [17] 刘贺雄周冰高宇辰 . APD探测系统的噪声特性及其影响因素研究. 激光技术, 2018, 42(6): 862-867. doi: 10.7510/jgjs.issn.1001-3806.2018.06.026
    [18] 刘贺雄周冰贺宣高宇辰范磊 . APD对湍流大气中激光的双重随机探测过程. 激光技术, 2019, 43(4): 471-475. doi: 10.7510/jgjs.issn.1001-3806.2019.04.007
    [19] 邹福清 . 二极管阵列探测器. 激光技术, 1991, 15(2): 121-121.
    [20] 邹福清译刘建卿校 . GaInAs光电探测器. 激光技术, 1988, 12(2): 50-50.
  • 加载中
图(4)
计量
  • 文章访问数:  588
  • HTML全文浏览量:  434
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-10
  • 录用日期:  2020-03-18
  • 刊出日期:  2021-01-25

InGaAs纳米线雪崩焦平面探测器发展研究

    通讯作者: 宋海智, hzsong1296@163.com
    作者简介: 张伟(1983-),男,博士研究生,现主要从光电功能材料与器件的研究
  • 1. 西南技术物理研究所, 成都 610041
  • 2. 电子科技大学基础与前沿科学研究所, 成都 610054
基金项目:  国家重点研发计划资助项目 2017YFB0405302四川省科技计划资助项目 2018TZDZX0001

摘要: 基于InGaAs纳米线的光电探测器,由于其优异的性能而受到广泛的关注和研究。综述了InGaAs纳米线光电探测器的探测机理、材料结构、器件性能和当前的研究现状。讨论了InGaAs纳米线雪崩焦平面探测器结构设计、纳米线材料精密生长、纳米线材料的界面与缺陷控制、纳米线雪崩焦平面器件制备工艺等关键技术。对发展高光子探测效率、低噪声、高增益InGaAs纳米线雪崩焦平面探测器的前景进行了展望。

English Abstract

    • 与体材料和薄膜材料相比,纳米线的1维结构特征使其具有独特的“光阱”效应,可以极大提高光的吸收率,制备出高探测效率的光电探测器,并实现器件的小型化[1-2]。同时,纳米线具有很强的应力释放能力,例如,异质结纳米线在侧壁上由晶格失配产生的应力可以得到有效释放,极大程度上克服晶格失配对外延生长的制约,可以将不同带隙的材料沿纳米线轴向串接起来形成“多节”结构,从而制备出1维结构的光电探测器,并实现吸收光谱的拓展[3-4]。这就为InGaAs等材料的Ⅲ-Ⅴ族纳米线光电子器件的制备,及其与InP,GaAs以及传统硅基材料的集成开辟了一条崭新途径。

      近年来,得益于材料生长技术的提高,研究者们已成功制备出InGaAs纳米线雪崩光电二极管(avalanche photon diode,APD),并获得了较好的光电响应性能。InGaAs纳米线雪崩焦平面阵列制备的光电探测器,在宽光谱成像、弱光探测、空间遥感、激光雷达等领域拥有可观的应用前景。本文中介绍了InGaAs纳米线阵列雪崩焦平面探测器的现状及发展趋势。

    • 纳米线雪崩光电探测器是通过2维材料生长制备,并具有吸收、电荷、倍增分离的器件结构。铟镓砷(InGaAs)是由铟、镓、砷3种元素组成三元合金化合物,属于Ⅲ-Ⅴ族半导体。InGaAs可以看成是由InAs和GaAs按照不同比例混合形成的,它的很多性质介于InAs和GaAs这两种材料之间。InGaAs具有可调的带隙,在室温下其带隙可以覆盖0.35eV~1.42eV,与之相对的波长覆盖3.5μm~0.87μm,是一种直接带隙半导体。图 1是InxGa1-xAs在77K下带隙随In的质量分数变化的示意图[1]。InGaAs纳米线材料制作的雪崩焦平面探测器(如图 2图 3图 4所示)具有高探测率、高灵敏度、强抗辐照,在室温或低温下工作性能稳定、且加工成本低、工艺简单等诸多优点[2-3],因此InGaAs纳米线器件如同薄膜器件一样,可用于激光探测、微光夜视系统、高光谱成像、精确制导、检测、空间遥感、仪器仪表和航空安全等方面[3-6]

      图  1  InxGa1-xAs 77K下带隙随In的质量分数变化示意图[1]

      图  2  InGaAs纳米线雪崩焦平面的结构图[2]

      图  3  InGaAs纳米线每层生长后在扫描电子显微镜下的图片[2]

      图  4  a—InGaAs探测器的3维模型图  b—InGaAs探测器在扫描电子显微镜下的图片

    • 1维半导体纳米线由于自身具备前面所述的独特性质,非常适合用来制作光电探测器,今年来逐渐成为研究热点。Ⅲ-Ⅴ半导体纳米线光探测器的报道也逐渐增多,如GaAs, InAs, InAsP和InGaAs纳米线探测器等。国外的主要研究单位有日本日立公司、美国加州大学戴维斯分校、美国加利福尼亚大学、荷兰代尔夫特理工大学、南洋理工大学等[7-14]。1991年,日本日立公司的研究人员利用GaAs纳米线P-N结阵列制备了第1个基于Ⅲ-Ⅴ族纳米线的发光二极管,拉开了Ⅲ-Ⅴ族纳米线光电子器件研究的序幕[10]。2008年,美国加州大学戴维斯分校、圣塔克鲁斯分校和休利特帕卡德实验室的研究人员合作制备了基于InP纳米线的光导型探测器,其响应速度达到14ps[11]。2012年,瑞典隆德大学制备了基于InP纳米线轴向P-I-N结阵列的太阳能电池,转换效率达到13.8%[12]。2012年,WALLENTIH等人报道的InAsSb纳米线光电探测器的响应波长范围0.9μm~2.3μm,并研究了不同直径的纳米线对光生电流的影响[13]。2014年,南洋理工大学DAI等人报道了核壳结构的GaAs/AlGaAs纳米线光电探测器,响应范围300nm~890nm,探测率到达7.2×1010cm·Hz1/2/W[14]。2018年,加利福尼亚大学FARRELL等人成功制备出InGaAs/GaAs纳米线雪崩焦平面探测器,其暗计数在77K时可低于10Hz[2]

      对于微观尺度的光电InGaAs探测器,目前国内的研究进行得较少。国内研制InGaAs纳米线光电探测器的主要单位有西南技术物理研究所、上海技术物理研究所、湖南大学、中国科学院北京半导体所等。2012年,LIU等人报道的采用化学气相沉积法生长的InAs纳米线室温光探测器,响应范围为300nm~1100nm,响应度和外量子效率分别为4.4×103A·W-1和1.03×106%[15]。2013年,REN等人采用离子置换的化学气相沉积法方法生长全组分的InAsP合金纳米线并制备近红外光电探测器,发现InAs0.52P0.48纳米线的响应度和外量子效率最高,分别为5.4×103A·W-1和3.96×105%[16]。2014年,FABG等人制备InAs单根纳米线场效应管并实现了宽谱快速探测[17]。2015年,TAN等人采用改进的一步生长化学气相沉积法成功制备出了高质量的InGaAs合金纳米线[18]。但InGaAs纳米线雪崩焦平面探测器在我国尚处于起步阶段,与国外先进水平存在较大差距。

    • 国外纳米线雪崩探测材料制备技术接近成熟,原型器件已经实现,器件工艺正逐渐完善; 国内纳米线有部分研究,尚未很好制备出纳米线材料,雪崩器件工艺尚未开展。未来需要重点突破纳米线雪崩焦平面APD结构设计技术、纳米线APD探测器材料精密生长技术、纳米线阵列材料的界面与缺陷控制、纳米线APD阵列器件制备工艺等技术,形成可行性高、可靠性好、可推广性强的工艺技术方案,研制出系列化的纳米线雪崩焦平面器件产品。具体而言,归纳为以下几个方面。

    • 结合传统雪崩光电探测理论,研究纳米线阵列的雪崩光电效应理论机理,构建雪崩过程模拟算法,进行纳米线阵列APD的仿真和分析。在充分考虑纳米线阵列特殊能带结构的基础上,研究其在雪崩探测中光吸收、载流子输运及雪崩倍增机制,并自主进行雪崩过程的仿真、分析和设计方法研究,开发出包含大部分已知物理效应(包括光吸收、碰撞离化、产生复合、隧道穿透、陷阱效应等)和1维纳米线特殊的物理效应(包括超高内禀光电增益、多阵列限光效应和亚波长尺寸效应等),可进行多种模型(包括蒙特卡罗法、自洽迭代法等)对比运算的雪崩设计程序,以完成纳米线雪崩探测器材料结构的完整设计。

    • 开展InGaAs纳米线雪崩焦平面材料外延生长工艺及优化研究。通过对束流、生长温度、Ⅲ-Ⅴ比等生长参量的调整,精确控制Ⅲ-Ⅴ族材料的掺杂浓度和组分,建立材料外延参量对物性影响的数据库。研究纳米线外延生长规律、生长工艺、金属催化剂引入、界面生长动力学,克服催化剂在生长过程中出现固态和液态两相并存的问题,降低孪晶和缺陷密度,通过调节温度、压力、生长速率等生长条件,引入生长中断、交替供流等手段,精确控制生长速率,实现形貌统一、表面光滑、结晶度高、组分精确、高纯度、低缺陷的纳米线阵列材料外延生长。

    • 为满足高性能雪崩二极管对纳米线阵列结构的特殊要求,需要适当地采取表面钝化、修饰掺杂、原子吸附、离子注入以及引入电子阻挡层等手段对纳米线阵列进行改性调制。在纳米线的侧壁粘附金属颗粒时,通过激发的表面等离子激元可以有效地提高纳米线阵列的吸收率。在纳米线阵列中引入合适尺寸的金属纳米颗粒后,通过不断优化纳米线阵列与金属颗粒的结构参量,得到新型结构的纳米线阵列。研究在金属颗粒溶液做催化剂作用下纳米线材料的外延生长机制,研究催化剂对生长速率的影响; 研究表面态的形成、演变及控制物理机理; 研究不同缺陷类型以及缺陷密度与纳米线材料的光学、电学性质的内在联系。

    • 创新器件制备工艺,突破传统技术方法,利用先进的微纳加工和检测手段,对芯片制造中的光刻、刻蚀、钝化、互连等过程进行精准控制,开发复杂结构和细微图形的加工技术。采用光刻胶形貌控制工艺、干湿法结合、刻蚀钝化交替技术,制备锥形亚波长陷光结构、表面等离子体增强金属光栅、以及光子晶体,研究其对纳米线性能的提升作用,开发最优化的表面陷光结构。

      通过厘清机制、建模仿真,并根据外延材料结构参量与器件性能指标关系,找出关键因素,折中设计外延材料结构。针对利用金属有机化合物化学气相沉淀或分子束外延的生长技术,对生长条件优化进行有效反馈,并优化其它生长参量(例如生长温度、生长压强等),进而抑制非故意掺杂浓度、位错、缺陷等形成,实现低缺陷外延材料生长。研究纳米线APD碰撞离化机制、光电转换机理、暗载流子、时间抖动、后脉冲产生的物理机制,分析影响单光子探测效率、暗计数率、时间抖动、后脉冲的关键因素,采取器件结构设计、电场分布设计、低温工作设计等合理的设计措施,有效提高单光子探测效率、抑制InGaAs纳米线中暗载流子产生。

    • 综上所述,InGaAs纳米线雪崩焦平面探测器具有高探测率、高灵敏度、强抗辐照、工作性能稳定、加工成本低、工艺简单等诸多优点,在激光探测、微光夜视系统、高光谱成像、精确制导、农业检测、空间遥感、仪器仪表等方面拥有广泛的应用前景。国际上已经有实验室制备了InGaAs纳米线雪崩焦平面探测器,但当前纳米线雪崩焦平面探测器的高成本、低探测效率等缺点导致其距离商用化还有一定距离。展望未来,在纳米线雪崩焦平面的结构仿真设计、纳米线阵列生长、纳米线电极制备光子探测效率、低暗计数率、低后脉冲等关键技术方面进行优化,发展出高光子探测效率、低噪声、高增益InGaAs纳米线雪崩焦平面的理论模型和工艺方案,将支撑系列化纳米线雪崩焦平面探测器产品的快速发展。

参考文献 (18)

目录

    /

    返回文章
    返回