高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于红外指纹光谱的快速鉴别黑色记号笔墨水

侯伟 王继芬

引用本文:
Citation:

基于红外指纹光谱的快速鉴别黑色记号笔墨水

    作者简介: 侯伟(1996-), 男, 硕士研究生, 现主要从事刑事技术方面的研究.
    通讯作者: 王继芬, wangjifen58@126.com
  • 基金项目:

    中国人民公安大学基本科研业务费重点资助项目 2019JKF223

  • 中图分类号: O433.4

Rapid identification of the black marker ink based on infrared fingerprint spectroscopy

    Corresponding author: WANG Jifen, wangjifen58@126.com
  • CLC number: O433.4

  • 摘要: 为了实现对记号笔墨水的检验与认定,采集了广博等5种品牌共计40支黑色记号笔红外指纹图谱数据。采用了多元散射校正、峰面积归一化、自动基线校正和Savitzky-Golay平滑等技术,建立了基于多层感知器的黑色记号笔墨水分类模型,进行了理论分析和实验验证。结果表明,红外指纹图谱能反映分子结构的细微变化,可将水性与油性记号笔区分; 针对4种油性记号笔样本,发现模型在30维矩阵上特征提取最好,准确率为100%, 其中特征12、特征26和特征17对模型区分效果的贡献程度最高,分别为0.0355, 0.0347和0.0346;4种油性品牌记号笔样本均实现了100%的准确区分, 其中乐途品牌样本聚敛程度较高,分布集中,其墨水组分和含量差异较小,宝克品牌样本分布较为分散,其墨水组分和含量相对差异较大; 在验证性分析中,8个待判定样本均实现了100%的准确区分和归类,实验结果理想,利用红外指纹图谱结合多层感知器可实现黑色记号笔墨水品牌间的准确识别与分类。该方法提高了检验鉴定效率、降低了检验鉴定成本、可满足一线执法人员快速、准确的检验需求。研究结果具有一定的普适性和借鉴意义。
  • Figure 1.  Infrared fingerprint of water-based and oily-based markers

    Figure 2.  Infrared fingerprint of oily-based markers about 4 brands

    Figure 3.  The accuracy of MLP under different dimensions

    Figure 4.  The details of characteristic variable importance

    Figure 5.  The spatial classification details of 4 brand samples

    Table 1.  The details of 40 samples

    type samples
    water-based markers Guangbo-1, Guangbo-2, Guangbo-3, Guangbo-4, Guangbo-5, Guangbo-6, Guangbo-7, Guangbo-8
    oily-based markers Sanmu-1, Sanmu-2, Sanmu-3, Sanmu-4, Sanmu-5, Sanmu-6 Letu-1, Letu-2, Letu-3, Letu-4, Letu-5, Letu-6, Letu-7, Letu-8, Letu-9, Letu-10, Letu-11, Letu-12, Letu-13, Letu-14 Jinwannian-1, Jinwannian-2, Jinwannian-3, Jinwannian-4, Jinwannian-5, Jinwannian-6 Baoke-1, Baoke-2, Baoke-3, Baoke-4, Baoke-5, Baoke-6
    下载: 导出CSV

    Table 2.  The data details of 4 kinds of samples

    brand minimum value maximum value average standard deviation coefficient of variation
    Sanmu 28.35436 74.06045 57.25220 14.386853 28.35436
    Letu 39.22037 78.16590 65.23025 12.533006 39.22037
    Jinwannian 38.93423 85.08097 71.69274 13.544799 38.93423
    Baoke 26.46985 82.26426 68.18328 12.606254 26.46985
    下载: 导出CSV

    Table 3.  Results of 8 determined-samples

    sample to be determined Sanmu Letu Jinwannian Baoke
    Sanmu-3
    Sanmu-5
    Letu-7
    Letu-5
    Jinwannian-2
    Jinwannian-4
    Baoke-6
    Baoke-1
    下载: 导出CSV
  • [1]

    WANG T Y, JIANG F. The development of police affairs under the evolution of China's national security concept[J]. Journal of Chinese People's Public Security University (Social Science Edition), 2018, 34(4): 69-74 (in Chinese).
    [2]

    HE X L, WANG J F, ZHANG Q, et al. Infrared spectral analysis of marker ink based on multi-classification model[J]. Chemistry, 2019, 82(2):169-174 (in Chinese).
    [3]

    AMADOR V S, PEREIRA H V, SENA M M, et al. Paper spray mass spectrometry for the forensic analysis of black ballpoint pen inks[J]. Journal of the American Society for Mass Spectrometry, 2017, 28(9):1965-1976.
    [4]

    PAVLOVICH M J, MUSSELMAN B, HALL A B. Direct analysis in real time-Mass spectrometry (DART-MS) in forensic and security applications[J]. Mass Spectrometry Reviews, 2018, 37(2):171-187.
    [5]

    ANDRASKO J, LUDMILA L A. Simplification of ink dating for forensic analysis by thermal microdesorption gas chromatography-mass spectrometry[J]. Journal Analytical Letters, 2019, 52(6):972-982. doi: 10.1080/00032719.2018.1509075
    [6]

    TREJOS T, TORRIONE P, CORZO R, et al. A Novel forensic tool for the characterization and comparison of printing ink evidence: Development and evaluation of a searchable database using data fusion of spectrochemical methods[J]. Journal of Forensic Science, 2016, 61(3):715-724.
    [7]

    AKHMEROVA O, KRYLOVA A, STAVRIANIDI A N, et al. Forensic identification of dyes in ballpoint pen inks using LC-ESI-MS[J]. Chromatographia, 2017, 80(11): 1701-1709.
    [8]

    ANDRASKO J, LAGESSON-ANDRASKO L. Simplification of ink dating for forensic analysis by thermal microdesorption gas chromato-graphy-mass spectrometry[J]. Analytical Letters, 2018, 52(6):1-11. doi: 10.1080/00032719.2018.1509075
    [9]

    RADKA P, QIU Ch L, SMUTS J, et al. Comparative study of ink photoinitiators in food packages using gas chromatography with vacuum ultraviolet detection and gas chromatography with mass spectrometry[J]. Separation Science, 2019, 42(2):556-565.
    [10]

    GUO M, SHAO L, CHEN X, et al. Assay of dried blood spot from finger prick for sodium valproate via ink auxiliary headspace gas chromatography mass spectrometry[J]. Journal of Chromatography, 2019, A1061:335-339.
    [11]

    SUGURU U, TOSHIHIKO Y, MAITO K, et al. Ink degradation and its effects on the crack formation of fuel cell catalyst layers[J]. Journal of the Electrochemical Society, 2019, 166(2): F89-F92. doi: 10.1149/2.0411902jes
    [12]

    KARINA F F C, GUILHERME D B, TATIANE S G, et al. Document ink dye age estimation by direct injection-mass spectrometry and correlation analysis[J]. Microchemical Journal, 2019, 147:1123-1132. doi: 10.1016/j.microc.2019.04.034
    [13]

    PATRIZIA M, GIULIA G, BRENDA D, et al. Disclosing the composition of historical commercial felt-tip pens used in art by integra-ted vibrational spectroscopy and pyrolysis-gas chromatography/mass spectrometry[J]. Journal of Cultural Heritage, 2019, 35: 242-253. doi: 10.1016/j.culher.2018.03.018
    [14]

    DIAZ-SANTANA O, VEGA-MORENO D, CONDE-HARDISSON F. Gas chromatography-mass spectrometry and high-performance liquid chromatography-diode array detection for dating of paper ink[J]. Journal of Chromatography, 2017, A1515(15):187-195.
    [15]

    ELOILSON D, DECARVALHO T C, PEREIRA I, et al. Paper spray ionization mass spectrometry applied to forensic chemistry-drugs of abuse, inks and questioned documents[J]. Analytical Method, 2017, 30(9): 4400-4409.
    [16]

    CHEN J N, YE S, DONG D M, et al. Laser raman spectroscopy telemetry system for agricultural pollutants[J]. Laser Journal, 2018, 39(9):25-29 (in Chinese).
    [17]

    BUITRAGO M F, SKIDMORE A K, GROEN T A. Connecting infrared spectra with plant traits to identify species[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 139:183-200. doi: 10.1016/j.isprsjprs.2018.03.013
    [18]

    GRUNERT T, STEPHAN R, MONIKA E S, et al. Fourier transform infrared spectroscopy enables rapid differentiation of fresh and frozen/thawed chicken[J]. Food Control, 2015, 60:361-364.
    [19]

    OU Y Y P, CHENG L, WU H C, et al. Study on general model of qualitative and quantitative anal-ysis of alcohol gasoline[J]. Laser Technology, 2019, 43(3):363-368 (in Chinese).
    [20]

    LIU Y D, XU H, SUN X D, et al. Non-destructive detection of tomato maturity by near-infrared dif-fuse transmission spectroscopy[J]. Laser Technology, 2019, 43(1):25-29 (in Chinese).
    [21]

    SONG S Y, LEE Y K, KIM I J. Sugar and acid content of citrus prediction modeling using FT-IR fingerprinting in combination with multivariate statistical analysis[J]. Food Chemistry, 2015, 190:1027-1032.
    [22]

    RAO X L, CHEN ZH D, LIN J, et al. Research on distributed cooperative training method of wireless sensor networks based on multilayer perceptron[J]. Journal of Jingchu Institute of Technology, 2019, 34(2):5-12 (in Chinese).
  • [1] 徐永浩宋彪陈晓帆黄梅珍 . 微型近红外光谱仪在苹果糖度测量中的应用研究. 激光技术, 2019, 43(6): 735-740. doi: 10.7510/jgjs.issn.1001-3806.2019.06.001
    [2] 陆俊高淑梅熊婕杨幼益陈国庆 . 女性尿液荧光光谱学特性及机理分析. 激光技术, 2010, 34(1): 45-47,84. doi: 10.3969/j.issn.1001-3806.2010.01.013
    [3] 赖思良王辉龚萍高慧李召松谢亮潘教青 . 基于近红外波段激光光谱吸收的丙烷探测研究. 激光技术, 2017, 41(2): 284-288. doi: 10.7510/jgjs.issn.1001-3806.2017.02.028
    [4] 付奎娄本浊孙彦清龙姝明黄朝军 . Zn0.95-xBe0.05MnxSe稀磁半导体的光谱特性分析. 激光技术, 2015, 39(1): 135-139. doi: 10.7510/jgjs.issn.1001-3806.2015.01.027
    [5] 宗鹏飞王志斌张记龙陈媛媛 . 基于红外被动测距的基线拟合算法研究. 激光技术, 2013, 37(2): 174-177. doi: 10.7510/jgjs.issn.1001-3806.2013.02.009
    [6] 宋昭远姚桂彬刘晓东张磊磊黄艳茹 . Yb3+掺杂锂硅酸盐玻璃的近红外发光特性. 激光技术, 2017, 41(2): 280-283. doi: 10.7510/jgjs.issn.1001-3806.2017.02.027
    [7] 毕琳娜陈国庆王俊颜浩然 . 甲基对硫磷溶液的荧光光谱及其特性----. 激光技术, 2010, 34(2): 253-257. doi: 10.3969/j.issn.1001-3806.2010.02.030
    [8] 张咏程瑶闫雨桐陈超陈国庆 . 几种常见食用油加热后荧光光谱特性变化的研究. 激光技术, 2013, 37(1): 109-113. doi: 10.7510/jgjs.issn.1001-3806.2013.01.027
    [9] 严阳华文深刘恂崔子浩 . 高光谱解混方法研究. 激光技术, 2018, 42(5): 692-698. doi: 10.7510/jgjs.issn.1001-3806.2018.05.020
    [10] 王龙沈学举张维安董红军 . 高斯光束的光谱传输特性分析. 激光技术, 2012, 36(5): 700-703. doi: 10.3969/j.issn.1001-3806.2012.05.032
    [11] 向英杰杨桄张俭峰王琪 . 基于光谱梯度角的高光谱影像流形学习降维法. 激光技术, 2017, 41(6): 921-926. doi: 10.7510/jgjs.issn.1001-3806.2017.06.030
    [12] 曾言曾延安张南洋生赵宇龙建明 . 一种改善成像光谱仪光谱检测能力的新方法. 激光技术, 2018, 42(2): 196-200. doi: 10.7510/jgjs.issn.1001-3806.2018.02.011
    [13] 郝健张记龙崔丹凤景宁 . 基于FPGA的傅里叶变换光谱仪光谱复原技术. 激光技术, 2011, 35(6): 804-807. doi: 10.3969/j.issn.1001-3806.2011.06.022
    [14] 罗泽鹏黄佐华唐志列 . 用光声光谱法测量紫外光探测器的光谱响应. 激光技术, 2008, 32(5): 453-455,459.
    [15] 陈亮游利兵王庆胜尹广玥褚状状方晓东 . 紫外激光诱导击穿光谱的应用与发展. 激光技术, 2017, 41(5): 619-625. doi: 10.7510/jgjs.issn.1001-3806.2017.05.001
    [16] 王召兵刘涛郝殿中彭捍东张霞吴闻迪 . 有色方解石晶体的光谱分析. 激光技术, 2008, 32(6): 596-597,604.
    [17] 林伟豪高致慧杨勇黄必昌贺威 . 基于激光光谱差分法检测NO2. 激光技术, 2014, 38(6): 835-838. doi: 10.7510/jgjs.issn.1001-3806.2014.06.024
    [18] 徐远泽郭建强高晓蓉王黎王泽男 . 温度对CO光谱线吸收的影响分析. 激光技术, 2010, 34(6): 778-780,784. doi: 10.3969/j.issn.1001-3806.2010.06.016
    [19] 武传龙冯国英韩旭姜海涛欧群飞王建军李密 . 微型光纤光谱仪的波长定标分析. 激光技术, 2012, 36(5): 682-685. doi: 10.3969/j.issn.1001-3806.2012.05.027
    [20] 杨晨光徐勇跃左都罗 . 自持体放电的发射光谱研究. 激光技术, 2013, 37(5): 642-646. doi: 10.7510/jgjs.issn.1001-3806.2013.05.017
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  297
  • HTML全文浏览量:  260
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-18
  • 录用日期:  2019-11-07
  • 刊出日期:  2020-07-25

基于红外指纹光谱的快速鉴别黑色记号笔墨水

    通讯作者: 王继芬, wangjifen58@126.com
    作者简介: 侯伟(1996-), 男, 硕士研究生, 现主要从事刑事技术方面的研究
  • 中国人民公安大学 刑事科学技术学院,北京 102623
基金项目:  中国人民公安大学基本科研业务费重点资助项目 2019JKF223

摘要: 为了实现对记号笔墨水的检验与认定,采集了广博等5种品牌共计40支黑色记号笔红外指纹图谱数据。采用了多元散射校正、峰面积归一化、自动基线校正和Savitzky-Golay平滑等技术,建立了基于多层感知器的黑色记号笔墨水分类模型,进行了理论分析和实验验证。结果表明,红外指纹图谱能反映分子结构的细微变化,可将水性与油性记号笔区分; 针对4种油性记号笔样本,发现模型在30维矩阵上特征提取最好,准确率为100%, 其中特征12、特征26和特征17对模型区分效果的贡献程度最高,分别为0.0355, 0.0347和0.0346;4种油性品牌记号笔样本均实现了100%的准确区分, 其中乐途品牌样本聚敛程度较高,分布集中,其墨水组分和含量差异较小,宝克品牌样本分布较为分散,其墨水组分和含量相对差异较大; 在验证性分析中,8个待判定样本均实现了100%的准确区分和归类,实验结果理想,利用红外指纹图谱结合多层感知器可实现黑色记号笔墨水品牌间的准确识别与分类。该方法提高了检验鉴定效率、降低了检验鉴定成本、可满足一线执法人员快速、准确的检验需求。研究结果具有一定的普适性和借鉴意义。

English Abstract

    • 记号笔墨水的检验与认定是司法鉴定中一项重要的工作。在宗教极端活动、渗透颠覆破坏活动和民族分裂活动中,反动分子常会用记号笔书写并张贴各种反动标语,宣扬反动思想,借此扰乱社会治安和公共秩序,破坏安定团结的政治局面。侦查部门通过对收缴标语、信件等上边记号笔墨水进行鉴定研究,可以确定记号笔的品牌和生产厂家,进而追溯其来源,从而为认定(排除)嫌疑人提供线索和有力证据[1-2]

      目前在司法鉴定中,针对记号笔墨水的鉴别研究较少,相关研究则集中于圆珠笔油墨的检验区分[3-5]。TREJOS等人[6]借助扫描电镜能谱、激光剥蚀(探针)电感耦合等离子体质谱、实时直接分析质谱和裂解-气相色谱-质谱法对来自全球的319个样本油墨的种类和品牌展开了区分研究。实验发现,激光剥蚀(探针)电感耦合等离子体质谱区分效果最好,其与实时直接分析质谱互补检验可有效改善和提高同类型油墨的分类能力。AKHMEROVA[7]建立了流动注射分析结合液相色谱-电喷雾电离-质谱法对圆珠笔笔划中油墨进行区分的方法。实验得出液相色谱流动相为甲酸水溶液(质量分数为0.001)和乙腈时分离效果最佳。由于染料峰强度低,基线噪音高,流动注射有效弥补了仅使用色谱方法的缺陷。该方法简单快速,可用于油墨快速检验和区分。

      在油墨检验鉴定领域,检验人员常用的方法有色谱法[8-11]和质谱分析法[12-15]等。这类方法相对较为繁琐,成本较高,而且会破坏样本,不利于后续检测。因此,如何研究新的方法对其进行快速无损检验是油墨检验鉴定领域的热点问题之一。红外光谱法作为一种无损检验方法,与传统的色谱质谱法相比具有成本低、操作简便、不破坏样本等优点,一直以来备受检验人员青睐而广泛应用于诸多领域[16-20]。其中指纹区的吸收峰具有较强的特征性,可用于区别不同化合物结构上的微小差异[21]。但由于记号笔墨水是混合物,当样本数量较多时,借助光谱图直接分析会产生较大的主观误差且耗时耗力,此外,成分的混杂使得谱图之间交叉混淆现象较多,无法直接实现对样品合理地区分。

      基于此,本研究中采集并分析40个黑色记号笔红外指纹图谱数据,同时借助化学计量学分析方法,建立基于多层感知器(multilayer perceptron, MLP)——中红外指纹图谱的记号笔墨水分类模型,同时对相关结果展开分析与讨论,实现对其品牌间的准确区分和归类,以期为黑色记号笔墨水快速准确地检验鉴别提供一定的参考和借鉴。

    • 样本:从市场上收集了40支记号笔,其中水性记号笔油有广博共计8支水性记号笔,油性记号笔有三木、乐途、宝克和金万年共计32支油性记号笔(见表 1)。

      Table 1.  The details of 40 samples

      type samples
      water-based markers Guangbo-1, Guangbo-2, Guangbo-3, Guangbo-4, Guangbo-5, Guangbo-6, Guangbo-7, Guangbo-8
      oily-based markers Sanmu-1, Sanmu-2, Sanmu-3, Sanmu-4, Sanmu-5, Sanmu-6 Letu-1, Letu-2, Letu-3, Letu-4, Letu-5, Letu-6, Letu-7, Letu-8, Letu-9, Letu-10, Letu-11, Letu-12, Letu-13, Letu-14 Jinwannian-1, Jinwannian-2, Jinwannian-3, Jinwannian-4, Jinwannian-5, Jinwannian-6 Baoke-1, Baoke-2, Baoke-3, Baoke-4, Baoke-5, Baoke-6

      仪器:Nicolet 5700型傅里叶变换红外光谱仪(Thermo Fisher Scientific公司),衰减全反射附件(Thermo Fisher Scientific公司),氘化三甘氨酸硫酸酯探测器(Thermo Fisher Scientific公司),KBr分束器(Thermo Fisher Scientific公司),OPUS光谱数据处理软件(德国Bruker公司)。扫描次数为32次,分辨率为4cm-1,光谱采集范围为1300cm-1~400cm-1,每个样本采集3次光谱曲线,取均值作为实验样本光谱数据,实验温度为(27±2)℃,相对湿度为47%。

    • 借助Nicolet 5700型傅里叶变换红外光谱仪获取40个样本的红外指纹谱图,光谱预处理采用多元散射校正(multiple scatter correction, MSC)、峰面积归一化(peak area normalization, PAN)和自动基线校正(automatic baseline correction, ABC),采用Savitzky-Golay平滑谱图,光谱波数400cm-1~500cm-1处噪声较大,将以上部分剔除,选择Zscore标准化处理数据,借助化学计量分析方法,开展对样本的分析与研究。

    • 多层感知器神经网络是一种常见的人工神经网络算法,它是一种趋向结构的神经网络,映射一组输入向量到一组输出向量。最典型的MLP包含3组结构,即输入层、隐层和输出层。MLP每一层的所有神经元都与下一层相连接。其中输入层的作用是将信息输入到神经网络之中,隐层的作用即通过一系列函数将输入映射到输出,常用的函数有sigmoid函数、tanh函数和ReLU函数,输出层即输出模型分类结果,常用softmax函数,若有一个神经元j, 当输入向量为yi时,其输出向量zj的表达式为[22]

      $ {\mathit{\boldsymbol{z}}_j} = \sum\limits_{i = 0}^n {{w_{ji}}} \cdot {\mathit{\boldsymbol{y}}_i} $

      (1)

      式中, yi为神经元j上一层的第i个神经元的输出,wji表示神经元j与神经元i连接的权重,zj为神经元j的输出向量。

    • 记号笔墨水分油性和水性两种,图 1为水性记号笔与油性记号笔的红外指纹图谱。由图 1可知,两种类型的记号笔谱图走势大致一样,但是出峰的位置,峰形等有较为明显的差异,在波数为1050cm-1处和750cm-1处,油性记号笔均有一宽峰,水性记号笔则没有峰,在波数为700cm-1处,油性记号笔有一左高右低的双峰,水性记号笔则有一尖峰。据此,借助红外指纹图谱可将8支广博品牌的记号笔样本全部区分出来。

      Figure 1.  Infrared fingerprint of water-based and oily-based markers

    • 32支油性记号笔的红外指纹图谱见图 2。由图 2可知,各样本的峰形、峰的走向和出峰的位置基本一致,在波数为1070cm-1处均有一个弱峰,在波数为1000cm-1左右均有一个左低右高的双峰,在波数830cm-1处各样本均有一宽峰,在波数为750cm-1处均有一峰,在波数为700cm-1处均有一左高右低的双峰。其中个别峰的个数以及相对峰高有所区别,在波数为1270cm-1和1160cm-1处部分样本有一宽峰,部分样本则没有,在波数为750cm-1处双峰的相对峰高有差异。依据谱图的特征开展区分工作费时费力,且将其实现准确区分难度较大。实验中借助化学计量分析方法,开展对样本品牌的分类工作。

      Figure 2.  Infrared fingerprint of oily-based markers about 4 brands

      随机在4种品牌中各选取其中一个样本,通过实验分析得到它们各自的光谱数据信息,实验结果如表 2所示。样本数据是否具备分析价值,主要通过以下3个指标进行衡量:均值、标准差和变异系数。其中均值能够反映样本数据集中趋势,标准差能够反映数据集离散程度,而变异系数即标准差与均值的比值,它是反映样本数据在单位均值上的离散程度的一项重要指标,其中变异系数小于0.15的数据可用于分析研究。由表 2可知,各样本变异系数均在0.15以下,因此这些样本数据可以满足分析研究的需要。

      Table 2.  The data details of 4 kinds of samples

      brand minimum value maximum value average standard deviation coefficient of variation
      Sanmu 28.35436 74.06045 57.25220 14.386853 28.35436
      Letu 39.22037 78.16590 65.23025 12.533006 39.22037
      Jinwannian 38.93423 85.08097 71.69274 13.544799 38.93423
      Baoke 26.46985 82.26426 68.18328 12.606254 26.46985

      光谱数据的维度过高会造成样本特征的冗杂,使计算过程变得更加复杂,增加了数据分析时长,同时也降低了模型精度,不利于数据的快速准确分析。因此必须合理控制数据维度,注意有效信息的采集。每个实验样本采集的光谱数据为波数在1304cm-1~500cm-1,分辨率为4cm-1,即实验数据为201维,其维度较高,需通过降维方式提取有效特征。

      借助主成分分析,选择降维后的1维到35维等共计35个维度下的特征变量,应用多层感知器(MLP)构建分类模型,对4种品牌的黑色记号笔墨水光谱数据展开识别工作,图 3中列举了10维、15维、20维、25维和30维等共计12个维度下分类模型的识别准确率。

      Figure 3.  The accuracy of MLP under different dimensions

      图 3可知,30维特征变量构建的MLP模型识别准确率最高,为100%,10维特征变量构建的MLP模型识别准确率最低,为59.4%。分析认为是原始数据经过降维后,30维矩阵上样本的特征信息提取较好,无用信息剔除较好,在10维、15维、25维矩阵上样本包含的信息量较少,特征信息损失较多,无法准确解释黑色记号笔墨水所包含的主要理化信息,而在31维、33维和35维矩阵上样本信息的无关特征和冗余特征较多,这增加了训练过程的时间,影响了模型的性能,降低了分类精度。综上所述,选择30维度光谱数据构建MLP分类模型,得到了各特征变量重要性分布结果(见图 4)。特征变量重要性即在MLP分类模型中,各维度变量对模型区分效果的贡献程度,由图 4可知,特征12贡献程度最高,为0.0355,其次为特征26和特征17,贡献程度分别为0.0347和0.0346,特征14贡献程度最低,为0.0316,30个特征变量的重要程度值总和为1。

      Figure 4.  The details of characteristic variable importance

      特征变量选择贡献程度最大的特征12、特征26和特征17,隐藏层数选择为一层,激活函数选择tanh函数,输出层激活函数选择softmax函数,构建MLP分类模型,得到了4种油性品牌的空间分布结果(见图 5)。

      Figure 5.  The spatial classification details of 4 brand samples

      图 5可知,4种品牌共计32样本均实现了100%的准确区分,其中x, yz分别代表特征12、特征26和特征17,乐途品牌的样本聚敛程度较高,分布集中,表明其墨水的组分和含量差异较小,宝克品牌的样本分布较为分散,其墨水的组分和含量相对差异较大。为验证模型精度,选择Sanmu-3, Sanmu-5, Letu-7,Letu-5,Jinwannian-2,Jinwannian-4,Baoke-6,Baoke-1这8个样本作为待判定样本,开展分类工作,得到了8个待判定样本的分类结果(见表 3)。由表可知各样本均实现了准确地归类,模型精度较高,可准确实现对黑色记号笔墨水品牌间的区分和认定。

      Table 3.  Results of 8 determined-samples

      sample to be determined Sanmu Letu Jinwannian Baoke
      Sanmu-3
      Sanmu-5
      Letu-7
      Letu-5
      Jinwannian-2
      Jinwannian-4
      Baoke-6
      Baoke-1
    • 以市面上常见的4种品牌的油性和1种品牌的水性记号笔为研究对象,提出了采用红外指纹图谱结合MLP对黑色记号笔墨水的品牌进行准确识别和分类。结果表明:借助数学模型展开模式识别,选择30纬度下的特征12、特征26和特征17,能够实现黑色记号笔墨水品牌间快速准确区分和认定的目的,准确率为100%,实验结果理想。这在一定程度上降低了检验成本,提高了检验效率,满足了基层执法人员快速准确检验的需求,具有一定程度上的实用价值。下一步研究工作中,应增加样本品牌和数量,同时对同一品牌不同生产批次的样本的差异点进行研究,力求完善黑色记号笔墨水的模式识别模型,为基层民警的检验鉴定工作提供借鉴和参考。

参考文献 (22)

目录

    /

    返回文章
    返回