高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高斯-谢尔脉冲在单模光纤中的传输特性研究

黄艳

引用本文:
Citation:

高斯-谢尔脉冲在单模光纤中的传输特性研究

    作者简介: 黄艳(1983-), 女, 硕士, 讲师, 现主要从事光学晶体偏振特性及偏光器件方面的研究。E-mail:huangyan_013@126.com.
  • 中图分类号: TN241

Study on propagation characteristics of Gaussian-Schell model pulses in single-mode optical fibers

  • CLC number: TN241

  • 摘要: 为了研究高斯-谢尔模型(GSM)脉冲在单模光纤中的传输特性, 采用相干函数传播分析法推导出GSM脉冲经单模光纤传输后输出脉冲的时间相干函数解析表达式, 在此基础上分析脉冲宽度、相干时间和功率谱等特征量的变化, 并推导出在远端条件下单模光纤的时域广义范西特-泽尼克定理。结果表明, GSM脉冲在单模光纤中的传输存在功率谱和全局相干度两个守恒量, 且二者是一致的。该研究结果对激光传输领域具有一定的理论和现实意义。
  • [1]

    XU S D, XU B J. Study on propagation properties of Gaussian-Schell model beams in negative index medium[J]. Laser Technology, 2014, 38(5) : 595- 598(in Chinese).
    [2]

    ZHAO Q, HAO H Y, FAN H Y, et al. Focusing characteristics of partially coherent cosh-Gaussian beams propagating through turbulent atmosphere[J]. Laser Technology, 2016, 40(5): 750- 755(in Chinese).
    [3]

    WOLF E, COLLET E. Partically sources which produce the same far-field intensity distribution as a laser[J]. Optics Commnications, 1978, 25(3):293-296. doi: 10.1016/0030-4018(78)90131-1
    [4]

    WOLF E. Unified theory of coherence and polarization of random electromagnetic beams[J]. Physics Letters, 2003, A312(5): 263- 267.
    [5]

    LI Y F, YANG W L, LI D J, et al. A comparison of axial length measurements with swept-source optical coherence tomography biometry and partial coherence interferometry AL-scan[J].Chinese Journal of Optometry & Ophthalmology and Visual Science, 2018, 20(11):648-652(in Chinese).
    [6]

    WANG F, YU J Y, LIU X L, et al. Research progress of partially coherent beams propagation in turbulent atmosphere[J]. Acta Physica Sinica, 2018, 67(18):184203 (in Chinese).
    [7]

    ZHAO Ch L, DONG Y, WU G F, et al. Experimental demonstration of coupling of an electromagnetic Gaussian Schell-model beam into a single-mode optical fiber[J]. Applied Physics, 2012, B108(4):891-895.
    [8]

    WHEELER D J, SCHMIDT J D. Coupling of Gaussian Schell-model beams into single-mode optical fibers[J]. Journal of the Optical Society of America, 2011, A28(6):1224-1238.
    [9]

    SESHADRI S R. Partially coherent Gaussian Schell-model electromagnetic beams[J]. Journal of the Optical Society of America, 1999, A16(6): 1373-1380.
    [10]

    LIU M Zh, VEMURI B B, DERICHE R. Unsupervised automatic white matter fiber clustering using a Gaussian mixture model [J]. Proceedings IEEE International Symposium on Biomedical Imaging, 2012(9): 522-525.
    [11]

    WANG Y, LI Y Q, LI X J, et al. Research on characteristics of super-Gaussian optical pulses without initial chirps in single-mode fibers[J]. Study on Optical Communications, 2015(1):17-19 (in Chinese).
    [12]

    JOHN Z, CURTIS R M. Validity of the additive white gaussian noise model for quasi-linear long-haul return-to-zero optical fiber communications systems[J]. Journal of Lightwave Technology, 2009, 27(16):3324-3335. doi: 10.1109/JLT.2008.2010514
    [13]

    DUAN W, YANG M L, GE Y. Study on transmission characteristics of gaussian pulse in single- mode fibers[J].Journal of Taiyuan University of Technology, 2006, 37(4):476-479(in Chinese).
    [14]

    XIE Y M. Study on the propagation properties of optical Gaussian shaped pulses in optical fibers[J]. Journal of Quantum Electronics, 2004, 21(1):56-59(in Chinese).
    [15]

    WU J W, XIA G Q, WU Zh M.Transmission characteristics of super-Gaussian optical pulse in the single-mode optical fiber[J]. Laser Technology, 2003, 27(4):342-348(in Chinese).
    [16]

    MANDEL L, WOLF E. Optical coherence and quantum optics[M]. Cambridge, UK: Cambridge University Press, 1995:56-60.
    [17]

    WU J, YAN G Sh. Basic coures on principles of optics[M]. Beijing: National Defense Industry Press, 2007:254-256, 287(in Chinese).
    [18]

    WU Ch Q. Optical waveguide theory[M]. 2nd ed. Beijing: Tsinghua University Press, 2005: 100-107(in Chinese).
    [19]

    GOODMAN J W. Introduction to fourier optics[M].3th ed.Beijing:Publishing House of Electronics Industry, 2006:3-20(in Chinese).
    [20]

    CHEN Y C, WANG J H. The principle of laser[M]. Hangzhou: Zhejiang University Press, 2004: 18-20(in Chinese).
  • [1] 曹金凤贺锋涛 . 基于图像功率谱的激光散斑评价方法. 激光技术, 2015, 39(3): 419-422. doi: 10.7510/jgjs.issn.1001-3806.2015.03.030
    [2] 吴建伟夏光琼吴正茂 . 超高斯光脉冲在单模光纤中的传输特性. 激光技术, 2003, 27(4): 342-344,348.
    [3] 曹涧秋陆启生 . 单模光纤中高阶色散对超高斯光脉冲传播的影响. 激光技术, 2006, 30(2): 209-211,220.
    [4] 冯其波梁晋文 . 单模光纤激光准直仪的研制. 激光技术, 1994, 18(6): 357-360.
    [5] 占生宝赵尚弘董淑福庄茂录夏贵进李云霞 . 双包层Er3+/Yb3+共掺光纤激光器的实验研究. 激光技术, 2003, 27(6): 606-608.
    [6] 温芳门艳彬孟义昌张书敏 . 基于光子晶体光纤的高斯脉冲光谱压缩数值研究. 激光技术, 2015, 39(1): 65-70. doi: 10.7510/jgjs.issn.1001-3806.2015.01.013
    [7] 刘宏展刘立人 . 星间激光通信发射终端耦合单元的研究. 激光技术, 2007, 31(4): 416-418.
    [8] 叶庆 . 偏置信号和噪声对单模激光随机共振的影响. 激光技术, 2017, 41(4): 602-605. doi: 10.7510/jgjs.issn.1001-3806.2017.04.029
    [9] 王贞浩张杨华王全军丁晶洁刘作业 . 基于脉冲整形的激发双重态间的相干布局操控. 激光技术, 2016, 40(6): 782-786. doi: 10.7510/jgjs.issn.1001-3806.2016.06.002
    [10] 阿不都热苏力·阿不都热西提艾尔肯·扎克尔帕尔哈提·吐尼亚孜 . 激光功率密度对自生磁场和电子热传导的影响. 激光技术, 2013, 37(1): 134-138. doi: 10.7510/jgjs.issn.1001-3806.2013.01.033
    [11] 刘笑兰刘三秋杨小松 . 激光等离子体临界面处的强朗缪尔湍动. 激光技术, 2007, 31(2): 213-216.
    [12] 占剑杨明江 . 脉冲YAG激光诱导放电击穿电压研究. 激光技术, 2009, 33(2): 138-140.
    [13] 杨明惠金琪刘劲松王可嘉杨振刚 . 飞秒激光结合啁啾太赫兹脉冲控制CO分子取向. 激光技术, 2015, 39(6): 735-740. doi: 10.7510/jgjs.issn.1001-3806.2015.06.001
    [14] 栗兴良牛春晖马牧燕吕勇 . 单脉冲激光损伤CCD探测器的有限元仿真. 激光技术, 2016, 40(5): 730-733. doi: 10.7510/jgjs.issn.1001-3806.2016.05.023
    [15] 赵洋金光勇李明欣张巍王頔 . 毫秒脉冲激光损伤CCD探测器的实验研究. 激光技术, 2017, 41(5): 632-636. doi: 10.7510/jgjs.issn.1001-3806.2017.05.003
    [16] 熊晗刘三秋廖晶晶刘笑兰 . 短脉冲强激光在次临界密度等离子体中的传播. 激光技术, 2010, 34(2): 272-274,284. doi: 10.3969/j.issn.1001-3806.2010.02.035
    [17] 黎小鹿李俊陶向阳 . 超短脉冲激光烧蚀半导体表面的热效应分析. 激光技术, 2007, 31(6): 624-626,629.
    [18] 艾尔肯·扎克尔阿不都热苏力·阿不都热西提艾米尔丁·艾米都拉 . 不同激光脉冲驱动的尾场中正电子加速的研究. 激光技术, 2011, 35(6): 854-856. doi: 10.3969/j.issn.1001-3806.2011.06.034
    [19] 王润轩 . 初始啁啾补偿光纤色散效应的数值研究. 激光技术, 2005, 29(1): 109-112.
    [20] 周次明陈留勇 . 单模Er3+/Yb3+共掺双包层光纤上转换效应实验研究. 激光技术, 2008, 32(6): 639-641,662.
  • 加载中
计量
  • 文章访问数:  105
  • HTML全文浏览量:  103
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-28
  • 录用日期:  2019-03-05
  • 刊出日期:  2019-11-25

高斯-谢尔脉冲在单模光纤中的传输特性研究

    作者简介: 黄艳(1983-), 女, 硕士, 讲师, 现主要从事光学晶体偏振特性及偏光器件方面的研究。E-mail:huangyan_013@126.com
  • 漳州职业技术学院 电子工程学院, 漳州 363000

摘要: 为了研究高斯-谢尔模型(GSM)脉冲在单模光纤中的传输特性, 采用相干函数传播分析法推导出GSM脉冲经单模光纤传输后输出脉冲的时间相干函数解析表达式, 在此基础上分析脉冲宽度、相干时间和功率谱等特征量的变化, 并推导出在远端条件下单模光纤的时域广义范西特-泽尼克定理。结果表明, GSM脉冲在单模光纤中的传输存在功率谱和全局相干度两个守恒量, 且二者是一致的。该研究结果对激光传输领域具有一定的理论和现实意义。

English Abstract

    • 对部分相干光的研究不管是在理论上还是在实际应用中都是极为重要的[1-10],比如,在光纤通信或者是传感器的使用中,对光电探测器的选择,取决于所接收脉冲的宽度和相干时间,这就要求人们对光在光纤中的传播规律有基本的了解。对光在光纤中的描述最一般地应采用部分相干光,因为它具有比相干光或非相干光更普遍的性质。迄今,已有高斯-谢尔模型脉冲(Gaussian-Schell model, GSM)在单模光纤中传输的研究报道[11-15]

      本文中采用的数学方法是2维傅里叶分析和广义Wiener-Khintchine定理[16]。首先分析准平稳脉冲在单模光纤中的传输,利用坐标转换将2维傅里叶分析转换成两次1维傅里叶分析,导出在远端条件下单模光纤的时域广义范西特-泽尼克定理;再以典型的GSM脉冲为例推导出其在单模光纤传输后输出脉冲的时间相干函数的解析表达式,在此基础上讨论了脉冲持续时间、相干时间和功率谱等一般结论。

    • 对于具有随机相位的准单色光脉冲,其复振幅光场v(t)为:

      $ v\left( t \right) = A\left( t \right)\exp \left\{ {{\rm{j}}\left[ {{\omega _0}t + \varphi \left( t \right)} \right]} \right\} $

      (1)

      式中, A(t)和φ(t)分别代表脉冲的振幅和相位,二者是统计独立的,ω0表示光的中心频率, t表示时间。

      随机场中某一点在不同时刻t1, t2的相干性可用时间相干函数w(t1, t2)描述,定义为[17]

      $ w\left( {{t_1},{t_2}} \right) = \left\langle {v\left( {{t_1}} \right){v^*}\left( {{t_2}} \right)} \right\rangle $

      (2)

      式中, 符号“〈〉”表示随机光场的统计平均值,上标*为复共轭。众所周知,光纤的一个输入δ(t)脉冲经光纤传输后的函数h(t, z)称为光纤的脉冲响应,在光纤可视为时间不变系统的假设下,输出光场与输入光场的关系是:

      $ v\left( {t,z} \right) = \int v \left( {t'} \right)h\left( {t - t'} \right){\rm{d}}t' $

      (3)

      将(3)式代入(2)式,并且考虑到h(t, z)对具体的光纤是一个确定的函数,则:

      $ \begin{array}{*{20}{c}} {w\left( {{t_1},{t_2},z} \right) = } \\ {\iint w\left( {{t_1},{t_2}} \right)h\left( {{t_1} - {{t'}_1}} \right){h^*}\left( {{t_2} - {{t'}_2}} \right){\text{d}}{{t'}_1}{\text{d}}{{t'}_2}} \end{array} $

      (4)

      使用新变量:

      $ \left\{ {\begin{array}{*{20}{l}} {\tau = {t_2} - {t_1}}\\ {t = \frac{1}{2}\left( {{t_1} + {t_2}} \right)}\\ {\Delta t' = {{t'}_2} - {{t'}_1}}\\ {t' = \frac{1}{2}\left( {{{t'}_1} + {{t'}_2}} \right)} \end{array}} \right. $

      (5)

      (4) 式可以改写成:

      $ \begin{array}{*{20}{c}} {w(t,\tau ,z) = \iint w\left( {t',\Delta t'} \right)h\left( {t + \frac{\tau }{2} - t' + \frac{{\Delta t'}}{2}} \right) \times } \\ {{h^*}\left( {t + \frac{\tau }{2} - t' - \frac{{\Delta t'}}{2}} \right){\text{d}}t'{\text{d}}\Delta t'} \end{array} $

      (6)

      (6) 式是一个普适且相当复杂的数学关系,一般没有解析解。为了使分析得以进行又不失一般性,通常假定:(1)输入是准平稳光场;(2)脉冲宽度比相干时间要大得多,因此在相干时间内,则时间相干函数可写成光强I(t′)与时间相干度γt′)的分离形式[17]:

      $ w\left( {t',\Delta t'} \right) = I\left( {t'} \right)\gamma \left( {\Delta t'} \right) $

      (7)

      将(7)式代入到(6)式可得:

      $ \begin{array}{*{20}{c}} {w(t,\tau ,z) = \int {\rm{d}} \Delta t' \cdot \gamma \left( {\Delta t'} \right)\int I \left( {t'} \right) \times }\\ {h\left( {t - t' - \frac{{\tau - \Delta t'}}{2}} \right){h^*}\left( {t - t' + \frac{{\tau - \Delta t'}}{2}} \right){\rm{d}}t'} \end{array} $

      (8)

      从(8)式中易见,一般情况下,右边不能将τt写成分离变数的形式,即输入准平稳光场并不能保证输出光场是准平稳的。

      以单模光纤为例做进一步分析,分析中假定光纤是无损耗的。单模光纤的分析仍从较普遍的(8)式开始。根据单模光纤的色散理论,其传递函数(即脉冲响应的傅里叶变换)在只考虑1阶色散的情况下为[18]:

      $ H\left( \nu \right) = \exp \left( {{\rm{j}}2{{\rm{ \mathsf{ π} }}^2}\beta ''z{\nu ^2}} \right) $

      (9)

      式中,$\beta \mathit{''} = \frac{{{{\rm{d}}^2}\beta }}{{{\rm{d}}{\omega ^2}}}$是1阶色散常数,表示传播常数β对光波角频率ω的2阶导数,ν是光的频率,z为传输距离。根据高斯函数的傅里叶变换公式和缩放定理:$\mathscr{F}[{\rm{exp}}\left[ { - {\rm{ \mathsf{ π} }}b{t^2}} \right] \propto {\rm{exp}}( - {\rm{ \mathsf{ π} }}{\nu ^2}/b)$,其中b为非零实数,则有:

      $ h(t) \propto \exp \left( { - {\rm{j}}\frac{{\rm{ \mathsf{ π} }}}{{2\beta ''{z^2}}}{t^2}} \right) $

      (10)

      (9) 式或(10)式对传输距离z没有限制。将上式代入(8)式得:

      $ \begin{array}{*{20}{c}} {w\left( {t,\tau ,z} \right) = \iint I\left( {t'} \right)\gamma \left( {\Delta t'} \right) \times } \\ {\exp \left[ { - {\text{j}}\frac{{\text{ }\!\!\pi\!\!\text{ }}}{{2\beta ''z}}{{\left( {t - t' - \frac{{\tau - \Delta t'}}{2}} \right)}^2}} \right] \cdot } \\ {\exp \left[ { - {\text{j}}\frac{{\text{ }\!\!\pi\!\!\text{ }}}{{2\beta ''z}}{{\left( {t - t' + \frac{{\tau - \Delta t'}}{2}} \right)}^2}} \right]{\text{d}}t'{\text{d}}\Delta t' = } \\ {\iint I\left( {t'} \right)\gamma \left( {\Delta t'} \right)\exp \left[ {{\text{j}}\frac{{2\left( {t - t'} \right)\left( {\tau - \Delta t'} \right)}}{{2\beta ''z}}} \right]{\text{d}}\Delta t'{\text{d}}t'} \end{array} $

      (11)
    • 对于(11)式,在继续演算前先讨论一种远端近似的情形,即相位因子$t\prime \Delta t\prime /\left( {\beta \mathit{''}z} \right) \ll 1$,更严格地应写成${T_0}{\tau _c}/\left( {\beta \mathit{''}z} \right) \ll 1$,这里T0τc分别是脉宽和光源的相干时间,这样(11)式在略去这一相位因子后可以分离成两个单重积分,即为:

      $ \begin{array}{*{20}{c}} {w\left( {t,\tau ,z} \right) = \exp \left( {{\rm{j}}\frac{{t\tau }}{{\beta ''z}}} \right)\int I \left( {t'} \right)\exp \left( { - {\rm{j}}2{\rm{ \mathsf{ π} }}\frac{{\tau t'}}{{2{\rm{ \mathsf{ π} }}\beta ''z}}} \right){\rm{d}}t' \times }\\ {\int \gamma \left( {\Delta t'} \right)\exp \left( { - {\rm{j}}2{\rm{ \mathsf{ π} }}\frac{{t\Delta t'}}{{2{\rm{ \mathsf{ π} }}\beta ''z}}} \right){\rm{d}}\Delta t' = }\\ {\mathscr{F}\left[ {I\left( {t'} \right)} \right] \cdot \mathscr{F}\left[ {\gamma \left( {\Delta t'} \right)} \right],\left( {\nu = \frac{t}{{2{\rm{ \mathsf{ π} }}\beta ''z}}} \right)} \end{array} $

      (12)

      (12) 式表明,在远端近似下,光场的相干度等于输入光强的傅里叶变换,光强度等于输入相干度的傅里叶变换,这称为单模光纤的时域广义范西特-泽尼克定理。

    • 下面回到(11)式进行非远端近似情形的分析,重写(11)式:

      $ \begin{array}{*{20}{c}} {w\left( {t,\tau ,z} \right) = \int {\rm{d}} t'I\left( {t'} \right)\exp \left[ {{\rm{j}}\frac{{2{\rm{ \mathsf{ π} }}\tau }}{{2\beta ''z}}\left( {t - t'} \right)} \right] \cdot }\\ {\int \gamma \left( {\Delta t'} \right)\exp \left[ { - {\rm{j}}\frac{{2{\rm{ \mathsf{ π} }}}}{{2\beta ''z}}\left( {t - t'} \right)\Delta t'} \right]{\rm{d}}\Delta t'} \end{array} $

      (13)

      上式对Δt′的积分相当于对γt′)的傅里叶变换[19],即:

      $ \begin{array}{*{20}{c}} {\mathit{\Gamma }\left( {\frac{{t - t'}}{{2\beta ''z}}} \right) = }\\ {\int \gamma \left( {\Delta t'} \right)\exp \left[ { - {\rm{j}}\frac{{2{\rm{ \mathsf{ π} }}}}{{2\beta ''z}}\left( {t - t'} \right)\Delta t'} \right]{\rm{d}}\Delta t'} \end{array} $

      (14)

      $\mathit{\Gamma }\left( {\frac{{t - t\prime }}{{2\beta \mathit{''}z}}} \right)$称为互谱密度,其与时间相干度γt′)在时-频上互为傅里叶变换。将(14)式代入(13)式得:

      $ \begin{array}{*{20}{c}} {w\left( {t,\tau ,z} \right) = \exp \left( {{\rm{j}}\frac{{2{\rm{ \mathsf{ π} }}\tau t}}{{2\beta ''z}}} \right)\int {\left[ {I\left( {t'} \right) \times } \right.} }\\ {\left. {\exp \left( { - {\rm{j}}\frac{{2{\rm{ \mathsf{ π} }}\tau }}{{2\beta ''z}}t'} \right)\Gamma \left( {\frac{{t - t'}}{{2\beta ''z}}} \right)} \right]{\rm{d}}t' = }\\ {\exp \left( {{\rm{j}}\frac{{2{\rm{ \mathsf{ π} }}\tau t}}{{2\beta ''z}}} \right)\left\{ {\left[ {I(t)\exp \left( { - {\rm{j}}\frac{{2{\rm{ \mathsf{ π} }}\tau }}{{2\beta ''z}}t} \right)} \right]*\mathit{\Gamma }\left( {\frac{{t}}{{2\beta \mathit{''}z}}} \right)} \right\}} \end{array} $

      (15)

      式中,*为卷积运算。(15)式是准平稳场输出的时间相干函数。

    • 设输入场(7)式是GSM脉冲:

      $ w\left( {t,\tau ,z} \right) = \exp \left( { - \frac{{{\rm{ \mathsf{ π} }}{t^2}}}{{2T_0^2}}} \right)\exp \left( { - \frac{{{\rm{ \mathsf{ π} }}{\tau ^2}}}{{2\tau _{\rm{c}}^2}}} \right) $

      (16)

      将(16)式代入(15)式得:

      $ \begin{array}{*{20}{c}} {\mathit{\Gamma }\left( {\frac{t}{{2\beta ''z}}} \right) = \mathscr{F}\left[ {\exp \left( {\frac{{ - {\rm{ \mathsf{ π} }}{\tau ^2}}}{{2\tau _{\rm{c}}^2}}} \right)} \right] = }\\ {\exp \left[ { - \frac{{\rm{ \mathsf{ π} }}}{2}{{\left( {\frac{t}{{\beta ''z/{\tau _{\rm{c}}}}}} \right)}^2}} \right],\left( {\nu = \frac{t}{{2\beta ''z}}} \right)} \end{array} $

      (17)

      根据(16)式和(17)式,(15)式为:

      $ \begin{array}{*{20}{c}} {w\left( {t,\tau ,z} \right) = \exp \left( {{\rm{j}}\frac{{2{\rm{ \mathsf{ π} }}\tau t}}{{2\beta ''z}}} \right)\left\{ {\left[ {\exp \left( { - \frac{{{\rm{ \mathsf{ π} }}{t^2}}}{{2T_0^2}}} \right)\exp \left( { - {\rm{j}}\frac{{2{\rm{ \mathsf{ π} }}\tau }}{{\beta ''z}}t} \right)} \right] * \exp \left[ { - \frac{{\rm{ \mathsf{ π} }}}{2}{{\left( {\frac{t}{{\beta ''z/{\tau _{\rm{c}}}}}} \right)}^2}} \right]} \right\} = }\\ {\exp \left( {{\rm{j}}\frac{{2{\rm{ \mathsf{ π} }}\tau t}}{{2\beta ''z}}} \right)\int {\exp } \left( { - \frac{{{\rm{ \mathsf{ π} }}{{t'}^2}}}{{2T_0^2}}} \right)\exp \left( { - {\rm{j}}2{\rm{ \mathsf{ π} }}\frac{\tau }{{2\beta ''z}}t'} \right)\exp \left[ { - \frac{{\rm{ \mathsf{ π} }}}{2}{{\left( {\frac{{t - t'}}{{\beta ''z/{\tau _{\rm{c}}}}}} \right)}^2}} \right]{\rm{d}}t' = }\\ {\exp \left( {{\rm{j}}\frac{{2{\rm{ \mathsf{ π} }}\tau t}}{{2\beta ''z}}} \right)\exp \left[ { - \frac{{\rm{ \mathsf{ π} }}}{2}{{\left( {\frac{t}{{\beta ''z/{\tau _{\rm{c}}}}}} \right)}^2}} \right]\int {\exp } \left\{ { - \frac{{\rm{ \mathsf{ π} }}}{2}\left[ {\frac{1}{{T_0^2}} + \frac{1}{{{{\left( {\beta ''z/{\tau _{\rm{c}}}} \right)}^2}}}} \right]{{t'}^2}} \right\} \cdot }\\ {\exp \left[ { - \frac{{\rm{ \mathsf{ π} }}}{2}\frac{{ - 2tt'}}{{{{\left( {\beta ''z/{\tau _{\rm{c}}}} \right)}^2}}}} \right]\exp \left( { - {\rm{j}}2{\rm{ \mathsf{ π} }}\frac{\tau }{{2\beta ''z}}t'} \right){\rm{d}}t' = }\\ {\exp \left( {{\rm{j}}\frac{{2{\rm{ \mathsf{ π} }}\tau t}}{{2\beta ''z}}} \right)\exp \left[ { - \frac{{\rm{ \mathsf{ π} }}}{2}{{\left( {\frac{t}{{\beta ''z/{\tau _{\rm{c}}}}}} \right)}^2}} \right]\exp \left\{ {\frac{{\rm{ \mathsf{ π} }}}{2}{{\left[ {\frac{1}{{T_0^2}} + \frac{1}{{{{\left( {\beta ''z/{\tau _{\rm{c}}}} \right)}^2}}}} \right]}^{ - 1}}{{\left( {\frac{1}{{{{\left( {\beta ''z/{\tau _{\rm{c}}}} \right)}^2}}}} \right)}^2}} \right\} \cdot }\\ {\int {\exp \left\{ { - \frac{{\rm{ \mathsf{ π} }}}{{2T_0^2}}\left[ {1 + {{\left( {\frac{{{T_0}{\tau _{\rm{c}}}}}{{\beta ''z}}} \right)}^2}} \right]{{\left[ {t' - \frac{t}{{1 + \left[ {{{\left( {\beta ''z/\left( {{\tau _{\rm{c}}}{T_0}} \right)} \right]}^2}} \right.}}} \right]}^2}} \right\}\exp \left( { - {\rm{j}}2{\rm{ \mathsf{ π} }}\frac{\tau }{{2\beta ''z}}t'} \right){\rm{d}}t' = } }\\ {\exp \left( {{\rm{j}}\frac{{2{\rm{ \mathsf{ π} }}\tau t}}{{2\beta ''z}}} \right)\exp \left[ { - \frac{{\rm{ \mathsf{ π} }}}{{2T_0^2}} \cdot \frac{{{t^2}}}{{1 + {{\left[ {\beta ''z/\left( {{T_0}{\tau _{\rm{c}}}} \right)} \right]}^2}}}} \right]\exp \left\{ { - \frac{{\rm{ \mathsf{ π} }}}{{2\tau _{\rm{c}}^2}} \cdot \frac{{{\tau ^2}}}{{1 + {{\left[ {\beta ''z/\left( {{T_0}{\tau _{\rm{c}}}} \right)} \right]}^2}}}} \right\} \cdot }\\ {\exp \left[ { - {\rm{j}}2{\rm{ \mathsf{ π} }}\frac{t}{{1 + {{\left[ {\beta ''z/\left( {{T_0}{\tau _{\rm{c}}}} \right)} \right]}^2}}}\frac{\tau }{{2\beta ''z}}} \right]} \end{array} $

      (18)

      (18) 式中的最后一个等式用了高斯函数在平移和缩放下的傅里叶变换公式:

      $ \begin{array}{*{20}{c}} {\mathscr{F}\left[ {\exp \left[ { - {\rm{ \mathsf{ π} }}b{{\left( {t - {t_0}} \right)}^2}} \right] \propto } \right.}\\ {\exp \left( { - \frac{{{\rm{ \mathsf{ π} }}{\nu ^2}}}{b}} \right)\exp \left( { - {\rm{j}}2{\rm{ \mathsf{ π} }}{t_0}\nu } \right),\left( {\nu = \frac{\tau }{{2\beta ''z}}} \right)} \end{array} $

      (19)

      式中,t0是一个实数,表示对时间的平移。将(18)式的相位项整理后得到:

      $ \begin{array}{*{20}{c}} {w\left( {t,\tau ,z} \right) = \exp \left( { - \frac{{\rm{ \mathsf{ π} }}}{{2T_0^2}} \cdot \frac{{{t^2}}}{{{\Delta ^2}}}} \right) \times }\\ {\exp \left( { - \frac{{\rm{ \mathsf{ π} }}}{{2\tau _{\rm{c}}^2}} \cdot \frac{{{\tau ^2}}}{{{\Delta ^2}}}} \right)\exp \left( {{\rm{j}}2{\rm{ \mathsf{ π} }}\frac{t}{{2\beta ''zR}}\tau } \right)} \end{array} $

      (20)

      式中,

      $ \left\{ {\begin{array}{*{20}{l}} {\Delta = \sqrt {1 + {{\left( {\frac{{\beta ''z}}{{{T_0}{\tau _{\rm{c}}}}}} \right)}^2}} }\\ {R = 1 + {{\left( {\frac{{{T_0}{\tau _{\rm{c}}}}}{{\beta ''z}}} \right)}^2}} \end{array}} \right. $

      (21)

      (20) 式表明, GSM脉冲经单模光纤传输后强度和相干性大小仍保持可分离变量形式,脉宽和相干时间同比例放大,放大因子随纤长的增加而增大。由此可见,GSM脉冲经单模光纤传输时的全局相干度τc/T0保持不变。物理上可以这样理解,因为全局相干度由脉冲光子的模式简并度决定,激光的光子简并度δ正比于$\frac{P}{{\Delta S\Delta \nu \Delta \mathit{\Omega }}}$[20],其中P, ΔS和ΔΩ分别表示光能量、辐射源面积和辐射角,所有这些量不随传输距离变化,对于光源谱宽Δν,稍后将证明它也是个传输不变量。因此,全局相干度是一个守恒量。

      如果取远端近似,则$\frac{{{T_0}{\tau _c}}}{{\beta \mathit{''}z}} \ll 1, \Delta = \frac{{\beta \mathit{''}z}}{{{T_0}{\tau _c}}}$,R=1,则(18)式可化为:

      $ \begin{array}{*{20}{c}} {w\left( {t,\tau ,z} \right) = \exp \left[ { - \frac{{\rm{ \mathsf{ π} }}}{2} \cdot \frac{{{t^2}}}{{{{\left( {\beta ''z/{\tau _{\rm{c}}}} \right)}^2}}}} \right] \times }\\ {\exp \left[ { - \frac{{\rm{ \mathsf{ π} }}}{2} \cdot \frac{{{\tau ^2}}}{{{{\left( {\beta ''z/{T_0}} \right)}^2}}}} \right]\exp \left( {{\rm{j}}2{\rm{ \mathsf{ π} }}\frac{t}{{2\beta ''z}}\tau } \right)} \end{array} $

      (22)

      (22) 式表明,远端GSM脉冲的光强和相干度分别与输入的相干度和光强成交叉傅里叶变换,是广义范西特-泽尼克定理(12)式的一个特例。

      功率谱由时间相干函数先对τ的傅里叶变换后再对t积分,根据(20)式和(21)式,光纤输出的功率谱是:

      $ \begin{array}{*{20}{c}} {P\left( {\nu ,z} \right) = \int {\rm{d}} t\exp \left( { - \frac{{\rm{ \mathsf{ π} }}}{{2T_0^2}}\frac{{{t^2}}}{{{\Delta ^2}}}} \right) \times }\\ {\mathscr{F}\left[ {\exp \left( { - \frac{{\rm{ \mathsf{ π} }}}{{2\tau _{\rm{c}}^2}} \cdot \frac{{{\tau ^2}}}{{{\Delta ^2}}}} \right)\exp \left( {{\rm{j}}2{\rm{ \mathsf{ π} }}\frac{t}{{2\beta ''zR}}\tau } \right)} \right] = }\\ {\int {\rm{d}} t\exp \left( { - \frac{{\rm{ \mathsf{ π} }}}{{2T_0^2}}\frac{{{t^2}}}{{{\Delta ^2}}}} \right)\left[ {\exp \left( { - {\rm{ \mathsf{ π} }}2{\Delta ^2}\tau _{\rm{c}}^2{\nu ^2}} \right) * } \right.}\\ {\left. {\delta \left( {\nu + \frac{t}{{2\beta ''zR}}} \right)} \right]} \end{array} $

      (23)

      (23) 式的第2个等式利用了函数积的傅里叶变换定理。利用δ(t)函数的卷积定理可将(23)式写成:

      $ \begin{array}{*{20}{c}} {P\left( {\nu ,z} \right) = \int {\rm{d}} t\exp \left( { - \frac{{\rm{ \mathsf{ π} }}}{{2T_0^2}} \cdot \frac{{{t^2}}}{{{\Delta ^2}}}} \right) \times }\\ {\exp \left[ { - {\rm{ \mathsf{ π} }}2{\Delta ^2}\tau _{\rm{c}}^2{{\left( {\nu + \frac{t}{{2\beta ''zR}}} \right)}^2}} \right] = }\\ {\int {\rm{d}} t\exp \left( { - {\rm{ \mathsf{ π} }}\frac{{{t^2}}}{{2T_0^2{\Delta ^2}}}} \right) \times }\\ {\exp \left\{ { - {\rm{ \mathsf{ π} }}\frac{{{{\left( {t + 2\beta ''zR\nu } \right)}^2}}}{{2{{\left[ {\beta ''zR/\left( {\Delta \cdot {\tau _{\rm{c}}}} \right)} \right]}^2}}}} \right\}} \end{array} $

      (24)

      上式是两个高斯函数对t的互相关,可写成:

      $ \begin{array}{*{20}{c}} {P\left( {\nu ,z} \right) \propto \exp \left[ { - {\rm{ \mathsf{ π} }}\frac{{{{\left( {2\beta ''zR\nu } \right)}^2}}}{{2T_0^2{\Delta ^2}}}} \right] \otimes }\\ {\exp \left\{ { - {\rm{ \mathsf{ π} }}\frac{{{{\left( {t + 2\beta ''zR\nu } \right)}^2}}}{{2{{\left[ {\beta ''zR/\left( {\Delta \cdot {\tau _{\rm{c}}}} \right)} \right]}^2}}}} \right\} = }\\ {\exp \left\{ { - \frac{\pi }{2}\frac{{{\nu ^2}}}{{{{\left[ {{T_0}\Delta /\left( {2\beta ''zR} \right)} \right]}^2}}}} \right\} \otimes }\\ {\exp \left\{ { - \frac{{\rm{ \mathsf{ π} }}}{2}\frac{{{\nu ^2}}}{{{{\left[ {1/\left( {\sqrt 2 \Delta \cdot {\tau _\rm{c}}} \right)} \right]}^2}}}} \right\} = }\\ {\exp \left\{ { - \frac{{\rm{ \mathsf{ π} }}}{2}\frac{{{\nu ^2}}}{{{{\left[ {{T_0}\Delta /\left( {2\beta ''zR} \right)} \right]}^2} + {{\left[ {1/\left( {\sqrt 2 \Delta \cdot {\tau _{\rm{c}}}} \right)} \right]}^2}}}} \right\}} \end{array} $

      (25)

      式中, ⊗表示相关运算。将(21)式代入(25)式, 经演算得:

      $ P(\nu ,z) \propto \exp \left[ { - \frac{\pi }{2}\frac{{{\nu ^2}}}{{{{\left( {1/{\tau _{\rm{c}}}} \right)}^2}}}} \right] $

      (26)

      (26) 式表明,光纤输出的功率谱与输入功率谱完全等同,谱宽不变。该结论可以这样理解:由于GSM在单模光纤中传输,根据(22)式,产生了第3个相位因子,这个相位项的时间导数代表色散引起的频率啁啾。为了看清它对功率谱的贡献,将光纤输出谱宽Δν写成如下形式:

      $ {\left( {\Delta \nu } \right)^2} = \frac{1}{{\tau _{\rm{c}}^2{\Delta ^2}}} + \frac{{T_0^2{\Delta ^2}}}{{2\beta ''{z^2}{R^2}}} $

      (27)

      式中, 第1项代表相干性决定的谱宽,第2项代表啁啾谱展宽。

      (1) 当z=0时,Δ=1,Rz=∞,则:

      $ \Delta v \propto \frac{1}{{{\tau _{\rm{c}}}}} $

      (28)

      (2) 当z≠0时,随着z增加,(27)式第1项谱宽减小,第2项谱宽加大,但两项之和保持不变。

    • 本文中利用相干函数传播的一般方法分析准平稳脉冲在单模光纤中的传输,以典型的GSM脉冲为例推导出其通过单模光纤后相干函数的解析表达式,在此基础上讨论了脉冲持续时间、相干时间和功率谱等特征量的变化。

      (1) 单模光纤中脉冲的宽度和相干时间均按同比例增大,但全局相干度τc/T0不变。功率谱也是传播中的不变量,这是因为功率谱与相干度是傅里叶变换关系。功率谱不变是由于相干性谱宽变窄,而色散产生的啁啾谱加宽,二者相互抵消。

      (2) 当传播距离足够大时${T_0}{\tau _\rm{c}}/\left( {\beta \mathit{''}z} \right) \ll 1$,光场的相干度等于输入光强的傅里叶变换,光强度等于输入相干度的傅里叶变换,这种交叉傅里叶变换称为单模光纤的时域广义范西特-泽尼克定理。

参考文献 (20)

目录

    /

    返回文章
    返回