高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可调谐单纵模多波长光纤激光器的研究

陈龙辉 谢芳 郭晓蕾 郭哲灿

引用本文:
Citation:

可调谐单纵模多波长光纤激光器的研究

    作者简介: 陈龙辉(1994-),男,硕士研究生,现主要从事光学检测的研究.
    通讯作者: 谢芳, fxie@bjtu.edu.cn
  • 基金项目:

    中央高校基本科研业务费专项资金资助项目 2020JBZ118

  • 中图分类号: TN242

Research on tunable single-longitudinal multi-wavelength fiber laser

    Corresponding author: XIE Fang, fxie@bjtu.edu.cn ;
  • CLC number: TN242

  • 摘要: 为了实现对台阶高度和绝对距离等物理量的高精度干涉测量,采用在一个光纤激光器中构建多个激光谐振腔的方法,构建了能同时发出多波长激光的光纤激光器。每个激光谐振腔都利用掺铒光纤作为增益介质,利用光纤光栅作为波长选择元件,改变光纤光栅的布喇格波长,即可改变对应谐振腔的激光波长。各个激光谐振腔独立但部分重叠,在重叠区域利用光纤耦合器构成复合子腔,使每个激光谐振腔都是复合激光谐振腔,从而使每个激光谐振腔都发出单纵模激光。结果表明,该光纤激光器能同时发出功率和频率都稳定的多波长激光,且每个波长都是单纵模激光;在4h内,每个波长的波长稳定性优于0.01nm。该设计对可调谐单纵模多波长光纤激光器的研究是有帮助的。
  • Figure 1.  Diagram of dual wavelength single longitudinal mode fiber laser

    Figure 2.  Schematic diagram of three wavelength single longitudinal mode fiber laser

    Figure 3.  Spectrum of dual wavelength single longitudinal mode fiber laser

    Figure 4.  Power measurement of each wavelength

    Figure 5.  Variations of the power of two wavelengths within 60min

    Figure 6.  Variations of two wavelengths within 4h

    Figure 7.  Heterodyne interference verification of single longitudinal mode

    Figure 8.  Heterodyne interferometric signal with laser cavity without sub-cavities

    Figure 9.  Heterodyne interferometric signal with laser cavity after embedding a subcavity

    Figure 10.  Spectrum of three-wavelength single longitudinal mode fiber laser

    Figure 11.  Variations of the power of three wavelengths within 60min

    Figure 12.  Variations in two wavelengths within 4h

  • [1]

    YU B L, ZHEN Sh L, ZHU J, et al. Experimental study on low-noise fiber laser[J]. Acta Optica Sinica, 2006, 26(2): 217-220(in Chinese). 
    [2]

    LU D, YANG Q L, WANG H, et al. Review of semiconductor distributed feedback lasers in the optical communication band[J]. Chinese Journal of Lasers, 2020, 47(7): 0701001(in Chinese). doi: 10.3788/CJL202047.0701001
    [3]

    KAWAHITO Y, MATSUMOTO N, MIZUTANI M, et al. Characterisation of plasma induced during high power fibre laser welding of stainlesssteel[J]. Science and Technology of Welding and Joining, 2008, 13(8): 744-748. doi: 10.1179/136217108X329313
    [4]

    SHCHEGLOV P Y, USPENSKIY S A, GUMENYUK A V, et al. Plume attenuation of laser radiation during high power fiber laserwelding[J]. Laser Physics Letters, 2011, 8(6): 475-480. doi: 10.1002/lapl.201110010
    [5]

    SHCHEGLOV P Y, GUMENYUK A V, GORNUSHKIN I B, et al. Vapor-plasma plume investigation during high-power fiber laserwelding[J]. Laser Physics, 2013, 23(1): 1-7. 
    [6]

    RUPPIK S, BECKER F, GRUNDMANN F P, et al. High power disk and fiber lasers-a performance comparison[J]. Proceedings of the SPIE, 2012, 8235: 82350V. doi: 10.1117/12.913286
    [7]

    MA S, XIE F, CHEN L, et al. Development of dual-wavelength fiber ring laser and its application to stepheight measurement using self-mixing interferometry[J]. Optics Express, 2016, 24(6): 5693-5698. doi: 10.1364/OE.24.005693
    [8]

    DONG L L, XIE F, MA S, et al. Simple tunable dual-wavelength fiber laser and multiple self-mixing interferometry to large step height measurement[J]. Optics Express, 2016, 24(19): 21880-21885. doi: 10.1364/OE.24.021880
    [9]

    DAI X J, WANG M, ZHAO Y, et al. Self-mixing interference in fiber ring laser and its applica tion for vibration measurement[J]. Optics Express, 2009, 17(19): 16543-16548. doi: 10.1364/OE.17.016543
    [10]

    YOUNG R J D, BARNES N P. Profiling atmospheric water vapor using a fiber laser lidar system[J]. Applied Optics, 2010, 49(4): 562-567. doi: 10.1364/AO.49.000562
    [11]

    XU B, WANNG Ch H, ZHANG J, et al. Signal extraction and si-mulation for coherent wind lidar[J]. Chinese Journal of Lasers, 2008, 35(s1): 181-184(in Chinese). 
    [12]

    XIA G F, ZHAO B J. Detection of air target based on multi-fractal analysis in a laser radar[J]. Chinese Optics Letters, 2007, 5(1): 51-53. 
    [13]

    FU E Sh. Small broadband fiber laser for tomography in the 1300nm wavelength region[J]. Laser & Optoelectronics Progress, 2004, 41(2): 38-40(in Chinese).
    [14]

    LI Y L, SONG Y R. Modeling of 1.2μm phosphorus-doped Raman fiber laser[J]. Acta Optica Sinica, 2014, 34(s1): s114015(in Chinese). 
    [15]

    HU M L, CAI Y. Research progress on mid-infrared ultrafast fiber laser[J]. Chinese Journal of Lasers, 2020, 47(5): 0500009(in Chinese). doi: 10.3788/CJL202047.0500009
    [16]

    WANG L L, LUO H Y, XIE J T, et al. 15W high power 2.9μm mid-infrared cascade erbium-doped ZBLAN fiber laser[J]. Chinese Journal of Lasers, 2015, 42(7): 0719001(in Chinese).
    [17]

    WEI Ch, SHI H X, LUO H Y, et al. Research progress of pulsed mid-infrared fiber lasers using two-dimensional materials[J]. Chin-ese Journal of Lasers, 2017, 44(7): 0703009 (in Chinese). doi: 10.3788/CJL201744.0703009
    [18]

    YANG W, DUAN Y F, WANG Q, et al. Research progress of 3μm fiber laser[J]. Laser & Infrared, 2015, 45(5): 471-475(in Chinese). 
    [19]

    COWLE G J, STEPANOV D Y. Multiple wavelength generation with Brillouin/erbium fiber lasers[J]. IEEE Photonics Technology Le-tters, 1996, 8(11): 1465-1467. doi: 10.1109/68.541551
    [20]

    LU Sh H, XU O, FENG S Ch, et al. Multi-wavelength fiber ring laser based on a chirped Moiré fiber grating and a semiconductor optical amplifier[J]. Chinese Optics Letters, 2009, 7(6): 469-471. doi: 10.3788/COL20090706.0469
  • [1] 肖平平邓满兰胡红武 . 基于无源腔多波长单模布里渊光纤激光器. 激光技术, 2016, 40(5): 727-729. doi: 10.7510/jgjs.issn.1001-3806.2016.05.022
    [2] 张志利孙利群田芊 . 半导体泵浦双向固体环型激光器的单纵模实现. 激光技术, 2003, 27(2): 140-142.
    [3] 董俊邓佩珍张影华刘玉璞徐军陈伟 . Cr, Nd:YAG晶体获得自调Q单纵模激光输出. 激光技术, 2001, 25(3): 203-205.
    [4] 邓溯平陈培锋王英龚磊 . 半导体双端抽运三程折叠谐振腔板条激光器. 激光技术, 2018, 42(1): 43-47. doi: 10.7510/jgjs.issn.1001-3806.2018.01.009
    [5] 郑雅文陈国胜陈文建胥浩李武森 . 一种多波长多编码合束输出的新型激光源研究. 激光技术, 2023, 47(5): 632-638. doi: 10.7510/jgjs.issn.1001-3806.2023.05.009
    [6] 汪帆潘炜罗斌熊悦许江衡 . 掺镱双包层光纤激光器多波长输出性能分析. 激光技术, 2005, 29(5): 497-500.
    [7] 张方海李正佳朱长虹秦军李亚华 . KTP/YAG多波长医用激光系统研究. 激光技术, 2001, 25(2): 136-139.
    [8] 曹三松 . 稳定腔激光模式理论的再研究. 激光技术, 2010, 34(1): 135-137,140. doi: 10.3969/j.issn.1001-3806.2010.01.038
    [9] 程成马养武 . 具有最大输出功率的CO2激光器谐振腔. 激光技术, 2002, 26(5): 346-349.
    [10] 肖贵遐丁金星 . 无源谐振腔激光陀螺实验系统的研制. 激光技术, 1998, 22(2): 73-76.
    [11] 吴羽龙晓莉焦中兴何广源张倩 . 热透镜效应补偿的高功率Nd:YAG激光器的优化设计. 激光技术, 2015, 39(3): 377-380. doi: 10.7510/jgjs.issn.1001-3806.2015.03.021
    [12] 刘慧姚育成黄楚云 . LD侧面抽运全固态Nd:YAG紫外激光器的研究. 激光技术, 2016, 40(2): 303-306. doi: 10.7510/jgjs.issn.1001-3806.2016.02.032
    [13] 熊新健陈培锋王英杨亚楠李响 . 半导体侧面抽运板条激光器光束质量优化. 激光技术, 2019, 43(5): 724-728. doi: 10.7510/jgjs.issn.1001-3806.2019.05.026
    [14] 彭润伍唐立军李亚捷伍冠洪唐俊龙 . 888nm半导体抽运的60W皮秒激光振荡器模型. 激光技术, 2011, 35(1): 51-53. doi: 10.3969/j.issn.1001-3806.2011.01.015
    [15] 李育德 . 全环形镜面利用的多程环形腔特性分析. 激光技术, 1996, 20(5): 269-275.
    [16] 杨真 . 新型绝热微环谐腔型低功耗硅基调制器的设计. 激光技术, 2015, 39(6): 885-888. doi: 10.7510/jgjs.issn.1001-3806.2015.06.032
    [17] 李家程愿应孙奕 . CO2激光器方型腔模式的有限元法分析初探. 激光技术, 1995, 19(5): 271-273.
    [18] 曹三松涂胜黄燕琳樊红英李佳玲夏惠军任刚 . 激光谐振腔中模的衍射损耗分析. 激光技术, 2018, 42(3): 400-403. doi: 10.7510/jgjs.issn.1001-3806.2018.03.021
    [19] 林加强戴川生姚培军许立新 . 单波长和双波长可调谐的掺镱锁模光纤激光器. 激光技术, 2023, 47(3): 301-304. doi: 10.7510/jgjs.issn.1001-3806.2023.03.002
    [20] 马海全赵卫张伟王屹山陈国夫程昭 . 波长可调谐被动锁模光纤激光器. 激光技术, 2006, 30(3): 289-291.
  • 加载中
图(12)
计量
  • 文章访问数:  6726
  • HTML全文浏览量:  3891
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-07
  • 录用日期:  2020-12-31
  • 刊出日期:  2021-11-25

可调谐单纵模多波长光纤激光器的研究

    通讯作者: 谢芳, fxie@bjtu.edu.cn
    作者简介: 陈龙辉(1994-),男,硕士研究生,现主要从事光学检测的研究
  • 北京交通大学 理学院 物理系, 北京 100044
基金项目:  中央高校基本科研业务费专项资金资助项目 2020JBZ118

摘要: 为了实现对台阶高度和绝对距离等物理量的高精度干涉测量,采用在一个光纤激光器中构建多个激光谐振腔的方法,构建了能同时发出多波长激光的光纤激光器。每个激光谐振腔都利用掺铒光纤作为增益介质,利用光纤光栅作为波长选择元件,改变光纤光栅的布喇格波长,即可改变对应谐振腔的激光波长。各个激光谐振腔独立但部分重叠,在重叠区域利用光纤耦合器构成复合子腔,使每个激光谐振腔都是复合激光谐振腔,从而使每个激光谐振腔都发出单纵模激光。结果表明,该光纤激光器能同时发出功率和频率都稳定的多波长激光,且每个波长都是单纵模激光;在4h内,每个波长的波长稳定性优于0.01nm。该设计对可调谐单纵模多波长光纤激光器的研究是有帮助的。

English Abstract

    • 光纤激光器因体积小、重量轻、可弯曲缠绕、成本低、抗干扰性强、抽运荧光的光谱较宽等优点,广泛应用于通讯[1-2]、激光加工[3-6]、精密测量[7-10]、激光导航[11-12]、生物[13-16]、医学[17-18]等领域。在精密测量领域,以激光器作为光源的激光干涉测量技术因其非接触测量方式、高精度、高分辨率等优势发挥着不可替代的作用。但由于激光干涉信号存在相位模糊问题,使激光干涉测量的量程限制在半波长范围,难以对台阶高度和绝对距离进行测量。然而,在工业、科研、航空航天等领域,需要对台阶高度和绝对距离进行非接触高精度测量。利用两个波长的激光以及3个波长的激光参与干涉测量,能够实现对台阶高度和绝对距离的高精度非接触测量。为了得到足够大的量程以及足够高的测量精度,需要参与测量的波长之间的间隔根据被测量的大小进行调谐。虽然人们一直对多波长激光器进行研究,例如COWLE等人[19]早在1996年就提出结合受激布里渊散射效应的多波长光纤激光器的研究,以掺铒光纤中的线性增益效应与单模光纤中的非线性布里渊增益效应为理论基础,构建了多波长布里渊激光器;LU等人[20]于2009年提出基于啁啾莫尔光栅和半导体光放大器的多波长光纤激光器研究,利用透射梳状滤波器实现波长选择,但是它们仍然很难满足相关测量要求。

      针对这一问题,本文中提出并研究了能同时发出多波长单纵模激光,波长的数目和各个波长之间的间隔可以根据测量需求任意调节的多波长光纤激光器。该激光器包含多个光纤激光谐振腔,每个激光谐振腔利用掺铒光纤作为增益介质,利用光纤光栅作为波长选择元件。改变激光谐振腔数即可改变输出波长数;改变光纤光栅的布喇格波长,即可改变对应谐振腔发出的激光波长值。利用光纤耦合器构成复合子腔,使得每个激光谐振腔都是复合谐振腔,从而每个激光谐振腔都输出单纵模激光。

    • 双波长单纵模光纤激光器的原理如图 1所示。980nm抽运光源发出的光经过3dB耦合器C1后被分为两路,一路光经过波分复用器(wavelength division multiplexer, WDM)WDM1和掺铒光纤(erbium-doped fiber, EDF)EDF1,激发出1550nm波段的荧光, 此荧光经过环形器(circulator, CIR)CIR1到达光纤布喇格光栅(fiber Bragg grating, FBG)FBG1。满足FBG1布喇格波长的光被其反射回来,再次经过CIR1、3dB耦合器C2、C3和C4、1 ∶9耦合器C、环形器CIR3、光纤光栅FBG3、光纤隔离器(isolator, ISO)以及WDM1,又通过EDF1,光强被放大,此光经过CIR1到达FBG1,再次被FBG1反射,重复以上路径,当增益大于损耗时,从1 ∶9耦合器C的一端输出波长为FBG1的布喇格波长的激光,输入光谱仪检测。另一路光经过波分复用器WDM2和掺铒光纤EDF2,激发出1550nm波段的荧光, 此荧光经过环形器CIR2到达光纤光栅FBG2。满足FBG2布喇格波长的光被其反射回来,再次经过CIR2、3dB耦合器C2、C3和C4、1 ∶9耦合器C以及CIR3,到达FBG3。由于FBG3的布喇格波长与FBG2的布喇格波长相同,光到达FBG3后即被其反射回来,再次经过CIR3、WDM2和EDF2,光强被放大,此光经过CIR2到达FBG2,再次被FBG2反射,重复以上路径,当增益大于损耗时,从1 ∶9耦合器C的一端输出波长为FBG2的布喇格波长的激光,输入光谱仪检测。

      Figure 1.  Diagram of dual wavelength single longitudinal mode fiber laser

      3dB耦合器C3和C4的作用是构成复合子谐振腔,使每个激光谐振腔都成为复合激光谐振腔,从而使得每个激光谐振腔都输出单纵模激光。3dB耦合器C3和C4构成3个子腔,分别是C3构成的腔长为L1的子腔、C4构成的腔长为L2的子腔,以及由C3和C4组合构成的腔长为L1+L2的子腔。

      每个子腔的纵模间隔分别为:

      $ \left\{ {\begin{array}{*{20}{l}} {\Delta {\mathit{v}_1} = \frac{c}{{n{L_1}}}}\\ {\Delta {\mathit{v}_2} = \frac{\mathit{c}}{{\mathit{n}{\mathit{L}_2}}}}\\ {\Delta {\mathit{v}_3} = \frac{c}{{\mathit{n}({\mathit{L}_1} + {\mathit{L}_2})}}} \end{array}} \right. $

      (1)

      式中,c为光速,n为光纤的折射率,L1L2L1+L2分别为3个子腔的腔长。

      根据游标效应,子腔串联加入激光谐振腔后,每个激光谐振腔的纵模间隔扩大为主腔纵模间隔与Δν1, Δν2和Δν3的最小公倍数。只要使每个激光谐振腔的纵模间隔不小于光纤光栅的反射谱宽,即可使每个激光谐振腔发出单纵模激光。

    • 三波长单纵模光纤激光器是在双波长单纵模光纤激光器的基础上再增加一个激光谐振腔, 其工作原理如图 2所示。分别以FBG1, FBG2, FBG3为波长选择元件构成3个激光环行谐振腔。每个激光环行谐振腔的路径与图 1中的激光环行谐振腔的路径相似。

      Figure 2.  Schematic diagram of three wavelength single longitudinal mode fiber laser

      图 1所示系统相同,图 2中的3dB耦合器C1和C2的作用是构成复合子谐振腔,与每个激光环行谐振腔共同作用,使每个激光环行谐振腔都输出单纵模激光。

    • 图 1所示的双波长单纵模光纤激光器中,FBG1的布喇格中心波长为1543.214nm,3dB带宽为0.043nm,反射率为50%;FBG2的布喇格中心波长为1554.552nm,3dB带宽为0.042nm,反射率为50%;FBG3的布喇格中心波长为1554.550nm,3dB带宽为0.6nm,反射率为99.9%以上;EDF1和EDF2的长度约为1m。由FBG1反射的光经过FBG3时透射,在对应的激光谐振腔传输,当增益大于损耗时,从1 ∶9耦合器C的一端输出波长为λ1=1543.212nm的激光;由FBG2反射的光经过FBG3时被反射,在对应的激光谐振腔传输,当增益大于损耗时,从1 ∶9耦合器C的同一端输出波长为λ1=1554.552nm的激光。输出双波长激光由光谱仪检测,如图 3所示。

      Figure 3.  Spectrum of dual wavelength single longitudinal mode fiber laser

      由于两个波长的激光分别由两个激光谐振腔形成,每个激光谐振腔都有各自的掺铒光纤作为增益介质,所以两个波长之间没有模竞争,都有稳定的功率。为了测试每个波长的功率稳定性,将两个波长的光分开,如图 4所示。FBG4的布喇格波长与FBG1的布喇格波长相同,两个波长的光分别透过FBG4,及被FBG4反射。

      Figure 4.  Power measurement of each wavelength

      分别用光功率计探测两个波长的功率,测试结果如图 5所示。两个波长的功率变化范围分别不超过±0.22μW和±0.20μW,两个波长的功率都很稳定。

      Figure 5.  Variations of the power of two wavelengths within 60min

      利用光谱仪分别对两个波长的波长稳定性进行测试,测试结果如图 6所示。在4h内,两个波长值的最大变化量不大于0.01nm,波长稳定性达10-6

      Figure 6.  Variations of two wavelengths within 4h

      设计利用外差光纤马赫-曾德尔干涉实验来验证每个波长的激光是否是单纵模。实验系统如图 7所示,以研制的双波长光纤激光器作为光源,声光调制器的调制频率为1.2MHz,将双波长光纤激光器的两个波长先后输入光纤马赫-曾德尔干涉仪。

      Figure 7.  Heterodyne interference verification of single longitudinal mode

      当在双波长光纤激光器的谐振腔中没有嵌入由3dB耦合器构成的复合子腔时,探测器探测到的外差干涉信号如图 8所示。外差干涉信号的幅值不断地变化,说明激光器同时输出多个纵模激光,探测到的外差干涉信号是每一个纵模的外差干涉信号的叠加。

      Figure 8.  Heterodyne interferometric signal with laser cavity without sub-cavities

      然后,在激光谐振腔中嵌入两个3dB耦合器,两个3dB耦合器构成3个激光谐振子腔。3个谐振子腔分别是由两个3dB耦合器构成的腔长为L1=40mm和L2=45mm的两个子腔,以及这两个子腔共同构成腔长为L3=85mm的第3个子腔。此时,激光谐振腔的纵模间隔是这3个子腔的纵模间隔与激光主谐振腔的纵模间隔的最小公倍数。

      3个子腔的纵模间隔分别为:

      $ \left\{ {\begin{array}{*{20}{l}} {\Delta {\mathit{v}_1} = \frac{c}{{n{L_1}}} = 5.\;172 \times {{10}^8}{\rm{Hz}}}\\ {\Delta {\mathit{v}_2} = \frac{\mathit{c}}{{\mathit{n}{\mathit{L}_2}}} = 4.\;598 \times {{10}^8}{\rm{Hz}}}\\ {\Delta {\mathit{v}_3} = \frac{c}{{\mathit{n}({\mathit{L}_1} + {\mathit{L}_2})}} = 2.\;434 \times {{10}^8}{\rm{Hz}}} \end{array}} \right. $

      (2)

      激光主谐振腔的长度为1.8m,主谐振腔的纵模间隔为Δν=c/(nL)=1.149×108Hz。激光主谐振腔的纵模间隔与3个子腔的纵模间隔的最小公倍数为6.651×109Hz,嵌入两个3dB耦合器构成的子腔以后,激光谐振腔的纵模间隔扩大。两个激光谐振腔的波长选择元件FBG1和FBG2的布喇格波长的3dB带宽约为0.043nm,对应的频率宽为5.369×109Hz。激光纵模间隔大于波长选择元件的反射谱带宽,所以,激光谐振腔中只能一个纵模起振并形成激光。

      将嵌入两个3dB耦合器构成的子腔的光纤激光器作为光源,重复以上实验,探测器探测到的外差干涉信号如图 9所示。外差干涉信号的幅值恒定不变,说明这是一个激光纵模产生的外差干涉信号。由此可知,此双波长光纤激光器实现了单纵模输出。

      Figure 9.  Heterodyne interferometric signal with laser cavity after embedding a subcavity

    • 在双波长单纵模光纤激光器的基础上再增加一个激光环行谐振腔,构成原理如图 2所示的三波长单纵模光纤激光器。在第3个激光谐振腔中,波长选择元件FBG3的布喇格中心波长为1548.051nm,3dB带宽为0.041nm,反射率均为55%,FBG4的布喇格中心波长与FBG3的布喇格中心波长相同,3dB带宽超过0.6nm,反射率99.9%以上。当980nm抽运光源输出功率约400mW时,从1 ∶9耦合器C的一个端口输出三波长激光,由光谱仪检测,如图 10所示。

      Figure 10.  Spectrum of three-wavelength single longitudinal mode fiber laser

      同样地,利用检测双波长单纵模光纤激光器各个波长的功率稳定性的方法,测试三波长单纵模激光器的每个波长的功率稳定性。测试结果如图 11所示,三波长激光的功率变化范围分别不超过0.20μW, 0.17μW, 0.22μW,输出功率非常稳定。

      Figure 11.  Variations of the power of three wavelengths within 60min

      同样地,利用检测双波长单纵模光纤激光器各个波长稳定性的方法,测试三波长单纵模激光器的每个波长的稳定性。测量结果如图 12所示。测试期间3个波长的最大漂移量均小于0.01nm,每个波长的稳定性均达10-6

      Figure 12.  Variations in two wavelengths within 4h

      同样地,利用与双波长单纵模光纤激光器相同的方法,验证了此三波长光纤激光器每个波长均是单纵模激光。

    • 提出并研究了一种能同时发出多波长激光且每个波长都是单纵模的多波长光纤激光器, 其波长的数目和各个波长之间的间隔可以根据测量需求进行调节。利用光纤及光纤器件搭建多个环行激光谐振腔,该激光器实现了不同波长的激光的同时输出。在稳定性方面,其输出的单个波长的功率保持稳定;在4h内,各个波长的波长稳定性甚至可以达到达0.008nm。

参考文献 (20)

目录

    /

    返回文章
    返回