高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

种子注入的高峰值功率全固态单频激光器

龙江雄 李刚 杨彬 姚红权 丁建永 周军

引用本文:
Citation:

种子注入的高峰值功率全固态单频激光器

    作者简介: 龙江雄(1994-), 男, 硕士研究生, 现主要从事固体激光技术方面的研究.
    通讯作者: 李刚, ligangopt@sina.com
  • 中图分类号: TN248.1

Seed-injected all-solid-state single-frequency lasers with high peak power

    Corresponding author: LI Gang, ligangopt@sina.com ;
  • CLC number: TN248.1

图(6)
计量
  • 文章访问数:  754
  • HTML全文浏览量:  397
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-27
  • 录用日期:  2018-10-23
  • 刊出日期:  2019-05-25

种子注入的高峰值功率全固态单频激光器

    通讯作者: 李刚, ligangopt@sina.com
    作者简介: 龙江雄(1994-), 男, 硕士研究生, 现主要从事固体激光技术方面的研究
  • 1. 陆军工程大学石家庄校区 电子与光学工程系, 石家庄 050003
  • 2. 南京先进激光技术研究院 先进全固态激光技术研发中心, 南京 210046

摘要: 为了研制光参量振荡器的单频制抽运源,采用偏压反馈的扫描-触发谐振探测技术,设计了种子注入的脉冲重复频率为500Hz的单端抽运键合Nd:YAG的电光调Q单频脉冲激光器,建立了单纵模振荡并进行了理论分析。结果表明,在抽运能量为36.8mJ时,输出单脉冲能量为8.4mJ,光光建模效率为23%,脉冲宽度为6.8ns,光束质量因子M2≈1.3,脉冲峰值功率为1.2MW;利用F-P标准具获得输出激光的干涉图样,经过1h观察,该激光器输出单纵模概率为100%。这一结果对于抽运光参量振荡器的研制是有帮助的。

English Abstract

    • 全固态单频脉冲激光器由于其线宽窄、相干长度长、效率高和结构紧凑的特点,在各类测风雷达[1-2]、引力波探测[3-4]、空间碎片探测[5]和激光光谱研究[6]等领域应用广泛。在激光光谱研究领域,用1064nm单频激光源抽运光参量振荡器[7-9]是全固态激光器领域进行激光光谱扩展的常用方法,单频激光源本身的单频特性和频率稳定性决定光参量振荡器输出光谱特性。种子注入的全固态单频激光器效率高,易于实现单纵模输出。扫描-触发的谐振探测技术[10]是实现单纵模激光输出常用的种子注入技术,其原理如下:将一束低功率、窄线宽的单频种子光注入到从动腔,先后在位于从动腔内的偏振器件上反射出两束种子光,二者光程差是腔长的两倍,连续改变从动腔的腔长,同时探测两束种子光的干涉情况,当检测到干涉的波峰或波谷时,种子光频率与从动腔的纵模频率匹配,此时打开Q开关即可输出单纵模激光。

      近年来,关于种子注入单频激光器的科学研究进展迅速,在诸多领域发挥着重要的作用。2011年,WANG等人[11]利用偏压反馈的扫描-触发谐振探测技术建立单纵模振荡,设计了传导冷却的种子注入的单频Nd:YAG激光器,输出1064nm激光脉冲能量8mJ,脉冲重复频率1kHz,脉冲宽度11ns,该激光器是空载激光雷达的光源。2013年,LU等人[12]采用腔内倍频的方式设计研制了用于多普勒测风雷达的种子注入的单频绿光光源,利用扫描-触发谐振探测技术建立单纵模振荡,该激光器输出单脉冲能量6.3mJ,脉冲宽度10ns,光束质量因子M2≈1.4,脉冲重复频率1kHz。2017年,XIE等人[6]利用重复频率为20Hz的1064nm单频脉冲激光器抽运光参量振荡器获得了单脉冲能量2.65mJ的2.05μm红外激光,脉冲宽度17.6ns,该激光器可广泛应用于激光医疗、空间激光通信、大气传感、材料处理等领域。

      为研制用于探测二氧化氮、二氧化硫等污染气体的中红外差分吸收激光雷达,要求设计脉冲重复频率至少达到500Hz的中红外单频激光发射源,采用波长为1μm的激光抽运光参量放大器是常用的实现中外激光输出的方法。本文中研制了用于抽运光参量放大器的种子注入的1064nm全固态单频脉冲激光器,该激光器峰值功率高、功率密度大,满足光参量放大器非线性晶体对抽运源功率特性的要求。该激光器以非平面环形振荡器(nonplanar ring oscillator, NPRO)作为种子源,采用偏置电压反馈的扫描-触发谐振探测技术建立单纵模振荡,实现100%单纵模激光输出,结构紧凑、体积较小。

    • 激光器装置结构原理如图 1所示。1064nm单频连续种子源是自主研发的NPRO激光器,该激光器输出单频1064nm激光功率400mW,线宽在千赫兹量级,光束质量因子小于1.2。CX3是焦距为200mm的凸透镜(convex, CX),其作用是准直种子源光束,为了更充分地隔离NPRO以防止振荡器漏出的1064nm激光干扰NPRO,采用两个隔离度为30dB的隔离器,光楔对(wedge pair, WP)WP1用来调节入射种子光的指向,位于隔离器之后的半波片和λ/4波片(quanter wave-plate, QWP)用来调节进入振荡器的种子光的偏振态,使种子光入射后第1次从偏振片(thin film polarizer, TFP)反射出来的光强与种子光经过振荡器来回反射后第2次从TFP反射出来的光强相当,从而增强二者干涉波形的对比度。

      Figure 1.  Structural schematic of laser device

    • 振荡器是由1064nm透过率为5%的后端镜(M1)和70%的前端镜(M2)以及两片双色镜(dichromatic, DM)(DM1 & DM2:HR1064nm & HT808nm)组成的U型谐振腔,腔长L=330mm,两端镜均固定在压电陶瓷(piezoelectric transducer, PZT)上。增益介质采用长度40mm、直径4mm的键合Nd:YAG晶体,其中掺杂的Nd3+粒子的原子数分数为0.005,掺杂长度为30mm,两端未掺杂部分长度均为5mm,未掺杂晶体能够作为热沉,有利于晶体散热,从而降低热量积累引起的热致退偏和热透镜效应。晶体两端面均镀有1064nm & 808nm增透膜,晶体由铟箔裹着装在紫铜热沉中,热电制冷器(thermo-electric cooler, TEC)将其温度控制在21℃,实验测得在此温度下晶体对抽运光的吸收率较高。腔内插入薄膜偏振片TFP、λ/4波片和电光晶体KDP,三者组成调Q开关,增益介质两端的λ/4波片起到消除空间烧孔的作用[13-14]。腔内两光楔对WP2和WP3共同调节腔内光路,使得振荡器输出激光功率最大,光斑能量分布最好。

    • 抽运系统采用单端抽运结构,抽运二极管(laser diode, LD)为nLIGHT公司的Pearl型产品,中心波长808nm,最高连续输出功率为200W,额定工作电流7.5A,由光纤导光,纤芯直径600μm。由于该LD体积相对较大,采用两片TEC进行控温,温度设置为18℃。由于Nd:YAG晶体的上能级粒子寿命为230μs,为尽可能提高谐振腔输出功率同时尽量减少晶体热效应,设置LD输出信号脉冲宽度为230μs,重复频率为500Hz。抽运耦合系统(coupling system, CS)由两片焦距分别为38mm(CX1)和20mm(CX2)的凸透镜以及防回光保护镜组成,防回光保护镜镀对1064nm激光高反,对808nm激光高透,防止从双色镜漏出的激光打坏抽运LD。聚焦腰斑直径在0.8mm~1.6mm范围内可调。

    • 调节种子注入系统结构中的半波片(half wave-plate, HWP)和QWP使种子光处于适合谐振探测的椭圆偏振态,旋转WP1使得从TFP靠近KDP那一面反射出来的两束种子光强度相当,在两端镜的PZT上分别加载周期性的梯形扫描电压信号和偏压反馈信号,光电探测器接收到的种子光干涉波形如图 2所示。在抽运同步信号下降沿附近施加PZT扫描电压,设置干涉信号检测窗口以确保在抽运下降沿前后触发Q开关。当在检测窗口内检测到波谷时产生调Q触发信号,Q开关打开输出单频激光脉冲,此时光电二极管(photo diode, PD)接收到从TFP发射出来的部分垂直偏振的激光脉冲,其强度足以掩盖种子光的干涉信号,所以在扫描电压下降沿时间内看不到种子光干涉信号。

      Figure 2.  Sequence signal waveform of oscilloscope

      为保证系统稳定工作,防止输出激光峰值功率密度过高而打坏光学元器件,将抽运LD最高电流设置为7A,对应的最高抽运能量为36.8mJ,用功率计测得此时输出激光功率为4.2W,即8.4mJ,光光转换效率为23%,斜率效率为24%,激光输出能量和脉冲宽度随抽运能量的变化关系如图 3所示。输出能量随着抽运能量的上升近乎线性增加,而脉冲宽度随之减小,减幅逐渐降低。使用带宽为2GHz的InGaAs光电二极管和带宽为500MHz的Tektronix MDO3054示波器观察输出激光脉冲波形,结果如图 4所示。脉冲宽度约为6.8ns,脉冲光滑没有调制尖峰,计算得到脉冲峰值功率为1.2MW。

      Figure 3.  Relationship of pump energy, output energy and pulse width

      Figure 4.  Waveform of output laser pulse

      利用间隔为40mm的法布里-珀罗(Fabry-Perot, F-P)标准具和Spiricon SP620U型电荷耦合器件(charge coupled device, CCD)观察输出激光干涉环图样,用凹透镜将输出激光扩束使其光斑覆盖整个F-P标准具,透过F-P标准具的光通过凸透镜聚焦在CCD上,观察到结果如图 5所示。从图 5中可观察到单频激光的精细结构,经过1h观察,干涉图样保持稳定,且激光脉冲波形始终光滑,该激光器输出单纵模概率为100%。

      Figure 5.  Interference pattern of F-P etalon

      使用Spiricon M2-200S型光束质量分析仪测量输出激光的光束质量因子M2,结果如图 6所示。水平方向和垂直方向的测量结果分别为1.29和1.32,输出激光光束质量接近衍射极限,其远场光斑强度分布如图 6中插图所示,光斑能量服从高斯分布。

      Figure 6.  Measurement of output laser beam quality (inset illustrates the intensity distribution of laser spot in far field)

    • 设计实现了种子注入的重复频率为500Hz的Nd:YAG单频激光器,采用种子注入单端抽运的U型谐振腔结构,使得激光器结构紧凑、体积较小,在抽运能量36.8mJ时,输出最高脉冲能量8.4mJ,脉冲宽度6.8ns,相应的脉冲峰值功率为1.2MW,光束质量因子M2≈1.3,能够稳定地输出单纵模激光脉冲。该激光器脉冲宽度窄、峰值功率高、功率密度大,可用于抽运光参量振荡器以研制中红外单频激光发射源。

参考文献 (14)

目录

    /

    返回文章
    返回