文章编号: 1001-3806(2022)06-0796-06

开关面板微纳结构的激光制备及超疏水性研究

何 洋1,叶晓慧2*,郑 希2,樊绍彦1,张志成1,欧阳紫晴3,龙江游3

(1.公牛集团股份有限公司, 宁波 315311; 2. 陕西科技大学 材料科学与工程学院, 西安 710021; 3. 广东工业大学 机电工 程学院, 广州 510006)

摘要:为了解决厨房用开关面板抗油污沉积的问题,采用飞秒激光在开关面板表面制备出微纳米复合结构表面,实现了超疏水性,进而减少油污沉积附着,研究了聚碳酸酯(PC)开关面板的激光烧蚀阈值、不同激光工艺参数和微纳结构 对表面浸润性的影响。结果表明,PC开关面板在515nm 波段下的烧蚀阈值为1.66µJ;当激光能量为1.6µJ、扫描速率为 200mm/s、搭接率为1/3线宽时,其表面液滴接触角为161°,表现出超疏水特性。经激光表面处理后的PC 面板具有超疏 水性,可实现表面的自清洁作用,显示出巨大的市场潜力。

关键词:激光技术;微纳结构的超疏水性;飞秒激光加工;开关面板 中图分类号:TN249 文献标志码:A doi:10.7510/jgjs.issn.1001-3806.2022.06.014

Laser direct fabrication of micro/nano structure on switch panel and its superhydrophobic performance

HE Yang¹, YE Xiaohui², ZHENG Xi², FAN Shaoyan¹, ZHANG Zhicheng¹, OUYANG Ziqing³, LONG Jiangyou³ (1. Gongniu Group Co. Ltd., Ningbo 315311, China; 2. School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; 3. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China)

Abstract: To solve the anti-oil deposition problem of switch panel, femtosecond laser was used to prepare micro/nano composite surface of the switch panel. And superhydrophobicity can be achieved, and then the adhesion of oil deposition can be reduced. In this paper, the laser ablation threshold, micro-nano structure design, and the influence of different laser process parameters and micro-nano structure on the surface wettability of polycarbonate (PC) switch panel were studied. The experimental results show that the ablation threshold of PC switch panel is 1.66μ J at 515nm. When the laser energy is 1.6μ J, the scanning speed is 200mm/s, and the overlapping ratio is 1/3 of the line width, the droplet contact angle is 161° , the superhydrophobicity is observed. PC panel with superhydro-phobicity can achieve surface self-cleaning effect, showing a huge market potential.

Key words: laser technique; superhydrophobic of micro/nano structure; femtosecond laser process; switch panel

引 言

随着生活质量的提高,厨房日益成为家庭生活的 中心,人们对厨房环境的要求越来越高。在厨房使用 的开关面板一方面受到空气中漂浮的大量污染物的沉 积附着,另一方面易被沾满污渍的手接触。随着使用 时长的增长,很容易在开光面板表面附着大量的污染。 这些沉积的污染物不仅影响厨房的美观度,更增加厨

作者简介:何 洋(1979-),男,硕士,高级工程师,主要从 事家电和电工用装饰及功能高分子材料的研究及应用开发。 * 通讯联系人。E-mail:yexiaohui@sust.edu.cn 收稿日期:2021-10-09;收到修改稿日期:2021-11-13 房清理的难度、危害人们的饮食健康^[1-2]。因此,开发 一种具有自清洁作用的开关面板,具有广阔的市场前 景,均为公牛品牌产品升级迭代提供强有力的支撑。

目前解决厨房污染自清洁问题的主要途径有两种。一种是涂层法材料疏水,即在需要自清洁的表面涂覆一层超疏水材料^[3-8],从而达到自清洁表面的要求,表面涂层能够赋予基体材料特殊的理化性能,可扩大超疏水金属表面的应用范围。GONG等人^[3]报道了通过简单的喷涂技术制备超疏水性涂层,聚二甲基硅氧烷可以与两种 SiO₂ 纳米粒子结合形成粗糙的结构,形成的涂层具有超疏水性,表现出优异的稳定性适用于防污和自清洁。CHO 等人^[4]合成出超疏水和透明

的硅氧烷基纳米复合材料,显示出均匀的粒径分布。 DONG 等人^[5]报道了一种基于水性体系的生态友好策 略来构建超疏水性各种织物上的涂层,首先涂上聚多 巴胺,然后用硬脂酸乳液以引入所需的表面形态和能 量,有强的超疏水性。但是,单纯修饰涂层与基体的结 合性能较差,极易受到破坏而丧失超疏水性能。另一 种是在材料表面进行微纳结构设计,使之在结构上成 为具有疏水特性的表面。近年来,国内外对于特殊润 湿性表面的研究也越来越多^[9-15]。BARTHLOTT等 人^[9]首次通过扫描电子显微镜观察荷叶表面,揭示了 表面微纳结构与荷叶"自清洁"效应的关系。JIANG 院士课题组[10-12]研究了多种仿生结构,进一步证实了 结构疏水的可行性。SUN 等人^[13]报道了当表面膜表 现出微/纳米分级结构,显示出超疏水特性、表现出优 异的自洁性和抗染色性性能、表现出油/水分离能力。 SHAO 等人^[14]开发了超疏水阵列表面,完整的超疏水 表面微/纳米结构阵列表现出优异的自清洁性能极低 的水粘附力。上述工作均表明,即使材料的本征特性 是亲水的,经过表面微纳处理后仍可得到超疏水表面。 由此可知,材料表面结构对液体的润湿性具有决定性 的作用,其中激光表面处理在超疏水领域已被学者研 究^[16-20]。GU 等人^[16] 概述了国内外激光刻蚀超疏水表 面的方法,讨论了飞秒、皮秒和纳米激光制备超疏水表 面的优缺点。LI^[17]针对激光烧蚀表面疏水性不稳定 的问题,研究了热处理对激光烧蚀金属表面润湿性能 的影响,结果表明,交替加热处理后的表面展现出了可 逆的超亲水-超疏水润湿转变。综上所述,采用激光法 制备微纳表面应用在超疏水表面具有广阔的应用前

本文中提出了采用超快激光(飞秒激光)在聚碳 酸酯(polycarbonate, PC)开关面板表面制备微纳复合 结构,通过研究超短激光在材料上的烧蚀阈值、不同激 光参数对材料加工处理后的材料形貌结构、激光处理 后的材料浸润性测试、探索接触角和表面形貌的关系 以及超疏水结构稳定性的测试,使开关面板具有较大 的接触角,实现超疏水性。超疏水性可以使得 PC 面 板具有自清洁的功能,是使用过程中可以减少污染物 的沉积附着,大大提高使用美观度,可进一步提升公牛 品牌核心竞争力。

1 实 验

景。

1.1 激光烧蚀阈值

本文中采用飞秒激光在 PC 开关面板制备微纳复

合结构,实现超疏水性。实验中使用的材料为聚碳酸 酯 PC 面板。激光器为飞秒激光器(Light Conversion, PHAROS),波长为 515nm,脉宽为 290fs,重复频率为 1kHz,光斑直径为 30μm。激光能量使用激光能量衰 减器控制。材料的烧蚀阈值是刚好造成材料烧蚀的能 量,与激光器和材料有关。本实验用不同的单脉冲能 量在材料上直写光斑分离的直线,可获得不同的光斑 图像,通过测量不同光斑的直径 D,根据下式^[21]:

$$D^{2} = 2w_{0}^{2}(\ln E - \ln E_{\rm th}) \tag{1}$$

式中,D为光斑直径, w_0 为光束束腰半径,E为实际加 工的激光能量, E_{th} 为材料烧蚀的单脉冲能量阈值。代 入单脉冲能量,通过线性拟合,可以求得束腰半径 w_0 与材料烧蚀的单脉冲能量阈值 E_{th} ,再根据下式^[21]可 求得造成材料烧蚀的能流密度阈值 F_{th} ,即烧蚀阈值:

$$F_{\rm th} = \frac{2E_{\rm th}}{\pi w_0^2}$$
(2)

1.2 PC 开关表面微纳结构的激光加工工艺研究

采用激光刻蚀法设计微米图案阵列为联通的单道 沟槽,是利用光热效应在样品表面加工出微纳米级粗 糙结构的方法,实验研究了飞秒单脉冲激光能量 E 分 别为 $0.5E_{th},1E_{th},2E_{th},即0.8\mu$ J, 1.6μ J, 3.2μ J、扫描速 度率为50mm/s~1600mm/s时,对微纳结构表面形貌 及疏水特性的影响,实验方案如表1所示。根据不同 的激光参数设置对 PC 面板材料进行表面微纳结构的 制备。

Table 1 Laser processing scheme

pulse energy E∕µJ	scanning speed $v/(\text{ mm } \cdot \text{s}^{-1})$					
0.8	50	100	200	400	800	1600
1.6	50	100	200	400	800	1600
3.2	50	100	200	400	800	1600

采用光学显微镜(Soptop CX40M)和扫描电子显微镜(Thermoscientific Apreo S)对微纳结构形貌进行观测,建立工艺与形貌的对应关系。经过工艺优化后,采用飞秒激光在 PC 材料面板表面制备出微米级单道沟槽的粗糙结构,并且在激光的诱导下在微米级沟槽表面原位生长出纳米颗粒。

1.3 PC 开关面板的超疏水性研究

为了研究上述飞秒激光表面微纳结构处理后的 PC 面板材料的性能,对 PC 面板材料的侵润性、接触 角与表面形貌的关系以及所制备的微纳粗糙超疏水结 构的稳定性进行测试表征。

1.3.1 浸润性测试 采用液体对固体的浸润性仪

器——接触角测量仪(Kruss DSA100E)对飞秒激光加 工过的 PC 面板材料进行浸润性测试,通常通过对接 触角的测试进行表征,接触角是显示固体表面湿度的 尺度,利用大部门固着物液进行测定,通过液-固-气结 合点中水珠曲线的终点和固体表面的接触点测定出 来。

1.3.2 超疏水结构稳定性测试 为了验证飞秒激光 所制备的超疏水结构的稳定性,对所制备的超疏水 PC 面板样件取样件分别标记,采用水浴超声仪器进行超 声清洗 5min,采用气枪对样板进行吹气,干燥后对超 声清洗前后的形貌和接触角进行对比分析。

2 结果与分析

2.1 PC 面板烧蚀阈值

烧蚀阈值是刚好造成材料烧蚀的能流密度,本文 中所用材料的烧蚀阈值通过不同的单脉冲能量在材料 上直写光斑分离的直线,可获得图 1a 中不同的光斑图 像,测量不同的光斑直径,根据(1)式代入单脉冲能 量,通过 ORIGIN 拟合图 1b 中的曲线,可以求得束腰 半径 w_0 与材料烧蚀的单脉冲能量阈值 $E_{\rm th}$,根据(2) 式可以求得材料烧蚀的能流密度阈值 $F_{\rm th}$ 。如图 1b 所 示,根据数据拟合,求得 w_0 =12.61 μ m, $E_{\rm th}$ =1.66 μ J,代 入(2)式,求得烧蚀阈值 $F_{\rm th}$ =0.66J/cm²。

2.2 PC 开关表面微纳结构的激光加工工艺研究

2.2.1 激光工艺对沟槽形貌的影响 在烧蚀阈值测

a-optical images of laser spot on PC panel b-relationship of laser spot and energy

试中,可知材料烧蚀的单脉冲能量阈值 E_{th} = 1.66µJ, 因此在微结构制备中单脉冲能量选择 0.5 E_{th} , 1 E_{th} , 2 E_{th} ,即分别为 0.8µJ, 1.6µJ, 3.2µJ,激光扫描速率为 50mm/s, 100mm/s, 200mm/s, 400mm/s, 800mm/s 和 1600mm/s 进行单次扫描,其沟槽形貌如图 2 所示。

Fig. 2 Optical images of grooves ablated by different scanning speed $a \sim f - E = 3.2 \, \mu J \quad g \sim l - E = 1.6 \, \mu J \quad m \sim r - E = 0.8 \, \mu J$

如图 2 所示,随着单脉冲激光能量的增大,沟槽宽 度逐渐减小且激光在 PC 面板上的烧蚀程度逐渐增 大;随着激光扫描速率的降低,沟槽周边的飞溅程度减 少,沟槽两侧出现 PC 材料的重熔堆积。单脉冲能量 和扫描速率的降低会使沟槽宽度增加,当速率比较低 (50mm/s)时,无论单脉冲能量大小如何,激光制备的 单道沟槽结构边缘出现较多的重熔堆积,但飞溅物较 少;当单脉冲能量固定为 1.6μJ 时,随着扫描速率的不断增大(最优为 800mm/s),激光刻蚀的单道沟槽边缘 飞溅物也随之增多(见图 2k),扫描速率增加至 1600mm/s,沟槽边缘的飞溅物过多,沟槽边缘形貌细 节难以观测;当单脉冲激光能量降低到 0.8μJ,在扫描 速率为 50mm/s 时沟槽结构边缘有重熔堆积,随着单 脉冲激光的扫描速率的增加,沟槽边缘重熔堆积逐渐 减少,飞溅物逐渐增多,当扫描速率增大到一定程度 (1600mm/s)时,则由于没有达到材料的烧蚀阈值而没 有沟槽(见图2r)。

单脉冲激光在 PC 表面制备的单道沟槽微结构会

存在一定的深度,由于光学显微镜景深不够,无法在光 学显微镜看到完整的单道沟槽内部结构,因此,需要将 激光构建的单道沟槽微纳结构在扫描电子显微镜中进 一步观察,结果如图3所示。

Fig. 3 SEM images of grooves ablated by different scanning speed a ~ f— $E = 3.2 \mu J$ g~l— $E = 1.6 \mu J$ m~r— $E = 0.8 \mu J$

从图 3 中可以看到,随着单脉冲激光能量的增大, 激光在 PC 面板上制备的沟槽结构深度增加,气孔尺 寸增大,两侧重熔堆积程度随之增大;随着激光扫描速 率的降低,沟槽内部的气孔从无到有,尺寸逐渐增大, 沟槽深度随扫描速率的降低逐渐减小。无论单脉冲激 光能量大小如何,当扫描速率为 50mm/s 时,PC 材料 表面的单道沟槽均出现熔化堆积此时沟槽没有深度; 当扫描速率从 100mm/s 逐渐增加到 400mm/s 时,激光 构造的单道沟槽内壁较为平滑但底部出现孔洞结构, 扫描速率逐渐增大时,底部的孔洞结构大小逐渐减小, 但空洞数量逐渐增多;当扫描速率增加到 800mm/s 时,单道沟槽结构无孔洞结构,沟槽深度较浅。随着扫 描速率的增多,单道沟槽结构的边缘外部飞溅物逐渐 增多,此结果与光学显微镜成像结果相同。

2.2.2 搭接率对沟槽形貌的影响 制备超疏水表面 的两个关键点是在材料表面形成微纳米复合结构。本 文中使用飞秒激光制备单道沟槽的 PC 表面微纳结 构,首先根据单道沟槽的形貌选了 3 个较为典型的形 貌对应的激光参数(分别为 $E=0.8\mu$ J,v=400mm/s; $E=1.6\mu$ J,v=200mm/s; $E=3.2\mu$ J,v=100mm/s)进行 不同的搭接率实验,根据对应激光参数制备沟槽的宽 度(即线宽 d)的 1/3,2/3,1,4/3 作为搭接率(设为 r_o) 进行扫描实验,其形貌如图 4 所示。

如图 4 所示,随着搭接率的增大,金相显微镜的成 像中显示 PC 材料表面的起伏程度随之减少,当搭接 率 r_{o} 为沟槽宽度的 1/3 时,沟槽表面较平整,但当实 验条件为: $E = 1.6\mu J, v = 200 mm/s$ 时(见图 4h),激光

Fig. 4 Optical images of grooves ablated by different overlapping ratio $a \sim d - E = 3.2 \mu J$, v = 100 mm/s $e \sim h - E = 1.6 \mu J$, v = 200 mm/s $i \sim l - E = 0.8 \mu J$, v = 100 mm/s

加工过程中会在表面形成等离子体回落到材料表面并 团聚到一起,从而载沟槽表面形成很多气室结构,此时 沟槽表面最粗糙。

2.3 PC 表面不同激光参数加工后性能测试

2.3.1 浸润性测试 为了检测材料表面的浸润性,利 用接触角测量仪进行滴液实验,每次注液量为3μL,浸 润性测试过程中各自的液滴形状如图5所示。接触角 测试结果如图6所示。

选择搭接率测试的3组激光参数继续进行超疏水 性研究。从图5中可以看到,在激光参数为E=3.2µJ 和v=100mm/s时,PC材料表面的液滴没有圆整形状 出现,但随着搭接率的减小,圆整度逐渐增加;激光参 数为E=0.8µJ和v=400mm/s时,PC材料表面的液滴 形状无圆整形状出现,且随搭接率改变时PC表面液 滴形状圆整度变化不大;当激光参数为E=1.6µJ和 v=200mm/s时,搭接率对PC材料表面的液滴形状有

Fig. 5 Shape of water drops under different overlapping ratio $a \sim d - E = 3.2 \mu J$, v = 100 mm/s $e \sim h - E = 1.6 \mu J$, v = 200 mm/s $i \sim l - E = 0.8 \mu J$, v = 100 mm/s

Fig. 6 Contact angles under different conditions

所影响;仅有当激光参数为 $E=1.6\mu$ J,v=200mm/s和 $r_{o}=d/3$ 时(见图 5h),PC 材料表面的液滴形状最圆整,经过接触角测试得到其接触角大小为 161°(见图 6),表明该参数下制备的 PC 表面微纳结构为超疏水表面。同时当激光参数设置为 $E=1.6\mu$ J和v=200mm/s时,各个搭接率的接触角对比别的激光参数 组测试结果都偏大,这一结果有可能是由于该参数下表面沟槽的深径比较大,形成更大的气室,导致接触角的增大。

2.3.2 接触角与表面形貌的关系 为了探究浸润性 与表面形貌的关系,将激光参数为:*E* = 1.6μJ,*v* = 200mm/s,搭接率分别设置为*d*/3,2*d*/3 和*d*的3组参 数的接触角与对应的形貌进行比较,结果如图7所示。

从图 7 可以清楚地看到,图 7f 中由于表面存在非 常微细的微纳米结构,这些微纳米结构在沟槽表面形 成较多的孔隙,更容易在沟槽表面形成气室结构,从而 增大 PC 表面的接触角,提高超疏水性能。图 7e 中由 于表面发生了重熔堆积,此时的 PC 材料表面几乎没 有深度与孔隙,此时较难形成气室结构,因此该激光参 数下制备的 PC 表面接触角较小,仅为 94.6°。图 7d 中沟槽之间刚好搭接,沟槽存在一定的深度,此时 PC 表面与液滴之间接触也会形成一定数量和大小的气

Fig. 7 Shape of water drops and SEM images under the condition of $1.\ 6\mu J$ 200mm/s with different overlapping ratio

 $a\,{\sim}\,c{-\!\!\!-}the$ shape of water drops $-d\,{\sim}\,f{-\!\!\!-}SEM$ images

室,也呈现出一定的超疏水性,接触角达到149°。因此可知,提高材料的疏水性可以制备孔隙结构从而有助于气室的形成,达到超疏水效果。

2.3.3 超疏水结构的稳定性 为了研究微纳表面结构的稳定性,对样件进行了超声清洗后吹干,并对其形 貌进行表征,结果如图 8 所示。

Fig. 8 Comparison of topography and shape of water drop before and after ultrasonic cleaning a~c—SEM images d—shape of water drop before ultrasonic clean-

ing $e \sim g$ —SEM images h—shape of water drop after ultrasonic cleaning

对制备的超疏水表面进行稳定性测试,发现材料 表面在超声清洗前表面存在团簇的微纳米结构(见图 8a~图 8c),而这些结构是由于在激光加工过程中 PC 表面出现了等离子体回沉造成的,这些团簇的微纳米 结构对 PC 表面有弱粘附力,用气枪吹气无法除去,有 一定的稳定性;但经过超声清洗后,表面的微纳米结构 背出去,材料表面平整,无法产生气室,因此接触角降 低,此时超疏水性能降低,表明采用激光加工制备的超 疏水 PC 材料表面的超疏水稳定性在气枪吹气时保持 稳定性,而在超声清洗后对其超疏水结构有一定的减 弱,从而降低超疏水性。

3 结 论

本文中采用飞秒激光在 PC 面板表面制备微纳复 合结构,并研究了其超疏水性。对 PC 面板材料的烧 蚀阈值进行计算,得到 PC 的烧蚀阈值为 0.66J/cm²。 采用不同的激光工艺对 PC 进行加工时,随着激光能 量的增加,沟槽宽度逐渐减小,激光烧蚀程度增大;随 着扫描速率降低,沟槽两边飞溅程度减小同时逐渐出 现重熔堆积;当能量降低和速率增加到一定程度,不会 产生沟槽。激光加工后,PC表面形貌随搭接率的增 大,表面的起伏减少,当搭接率为线宽的1/3时,表面 较平,激光参数设置为:*E*=1.6μJ,*v*=200mm/s,加工 时 PC表面形成的等离子体回落到材料表面并团聚, 产生气室结构,提高材料的疏水性可以通过制备孔隙 结构达成,表面接触角为161°,实现超疏水性能。激 光加工制备的超疏水 PC 材料表面的超疏水稳定性在 超声清洗后对其超疏水结构有一定的减弱,干燥后可

保持一定的稳定性。经表面处理后的 PC 面板表现出 超疏水特性,可实现表面的自清洁作用,显示出巨大的 市场潜力。

参考文献

- ZHANG M, WANG J P. Present situation and development trend of kitchen water-based cleaning agent in China [J]. Modern Salt and Chemical Industry, 2018, 45(3): 13-14 (in Chinese).
- [2] DONG Q. Optimization study on high efficiency capture technology of kitchen range hood [D]. Tianjin: Tianjin University, 2017: 4-17(in Chinese).
- GONG X, HE S. Highly durable superhydrophobic polydimethylsiloxane/silica nanocomposite surfaces with good self-cleaning ability[J].
 ACS Omega, 2020, 5(8): 4100-4108.
- [4] CHO E C, CHANG-JIAN C W, CHEN H C, et al. Robust multifunctional superhydrophobic coatings with enhanced water/oil separation, self-cleaning, anti-corrosion, and anti-biological adhesion [J]. Chemical Engineering Journal, 2017, 314: 347-357.
- [5] DONG X L, GAO S W, HUANG J Y, et al. A self-roughened and biodegradable superhydrophobic coating with UV shielding, solarinduced self-healing and versatile oil-water separation ability[J]. Journal of Materials Chemistry, 2019, A7(5): 2122-2128.
- [6] LU Sh, LI M. Progress in superoleophobic surface [J]. Materials Review, 2013, A27(6): 13-20(in Chinese).
- [7] ZHENG H, LIU L, MENG F, et al. Multifunctional superhydrophobic coatings fabricated from basalt scales on a fluorocarbon coating base[J]. Journal of Materials Science & Technology, 2021, 84 (25): 86-96.
- [8] ANJUM A S, ALI M, SUN K C, et al. Self-assembled nanomanipulation of silica nanoparticles enable mechanochemically robust super hydrophobic and oleophilic textile [J]. Journal of Colloid and Interface

Science, 2020, 563: 62-73.

- [9] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biologic surfaces[J]. Planta, 1997, 202(1): 1-8.
- [10] LIU M J, WANG S T, JIANG L. Nature-inspired superwettability systems[J]. Nature Reviews Materials, 2017, 2(7): 17036.
- [11] SI Y F, DONG Z C, JIANG L. Bioinspired designs of superhydrophobic and superhydrophilic materials [J]. ACS Central Science, 2018, 4(9): 1102-1112.
- [12] LIUKS, TIANY, JIANG L. Bio-inspired superoleophobic and smart materials: Design, fabrication, and application[J]. Progress In Materials Science, 2013, 58(4): 503-564.
- [13] SUN S, ZHU L, LIU X, et al. Superhydrophobic shish-kebab membrane with self-cleaning and oil/water separation properties [J].
 ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9866-9875.
- [14] SHAO Y, ZHAO J, FAN Y, et al. Shape memory superhydrophobic surface with switchable transition between "lotus effect" to "rose petal effect" [J]. Chemical Engineering Journal, 2020, 382(15): 122989.
- [15] WANG X L, PAN Y M, YUAN H, et al. Simple fabrication of superhydrophobic PLA with honeycomb-like structures for high-efficiency oil-water separation [J]. Chinese Chemical Letters, 2020, 31 (2): 365-368.
- [16] GU J, YE X, FAN Zh M, et al. Progress in fabrication of biomimetic superhydrophobic surfaces by laser etching[J]. Laser Technology, 2019, 43(4): 57-63(in Chinese).
- [17] LI X Y. Superhydrophobic metallic surfaces fabrication by laser ablation and their properties [D]. Changchun: Jilin University, 2021: 10-23 (in Chinese).
- [18] NASSER J, LIN J J, ZHANG L S, et al. Laser induced graphene printing of spatially controlled super-hydrophobic/hydrophilic surfaces[J]. Carbon, 2020, 162: 570-578.
- [19] ZHANG W Y, YAN W S, ZHENG H N, et al. Laser-engineered superhydrophobic polydimethylsiloxane for highly efficient water manipulation [J]. ACS Applied Materials & Interfaces, 2021, 13 (40): 48163-48170.
- [20] YANG H, GUN X Y, PANG G H, et al. Femtosecond laser patterned superhydrophobic/hydrophobic SERS sensors for rapid positioning ultratrace detection [J]. Optics Express, 2021, 29 (11): 16904-16913.
- [21] LONG J Y. Controllable preparation of micro/nano structures on metal surfaces by ultrafast laser and the anti-icing performance of superhydrophobic surfaces [D]. Beijing: Tsinghua University, 2017: 6-20(in Chinese).